
State Set Representations and their Usage in the
Reachability Analysis of Hybrid Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Stefan Alexander Schupp, Master of Science
aus Haan, Deutschland

Berichter: Universitätsprofessorin Dr. Erika Ábrahám
Universitätsprofessor Dr. Goran Frehse

Tag der mündlichen Prüfung: 25. September 2019

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.





Abstract

Hybrid systems in computer science are systems with combined discrete-
continuous behavior. This work presents results obtained in the field of
safety verification for linear hybrid systems whose continuous behavior
can be described by linear differential equations. We focus on a special
technique named flowpipe-construction-based reachability analysis, which
over-approximates the reachable states of a given hybrid system as a finite
union of state sets. In these computations we can use different geometric
and symbolic representations for state sets as datatypes.

The choice of the state set representation has a strong impact on the
precision of the approximation and on the running time of the analy-
sis method. Additionally, numerous further parameters and heuristics
influence the analysis outcome.

In this work we investigate on the influence and optimal usage of these
parameters. Our results are collected in a publicly available open-source
C++ programming library named HyPro. The major contributions of this
work are threefold:

• We present our HyPro library offering implementations for several
state set representations that are commonly used in flowpipe-con-
struction-based reachability analysis. A unified interface in com-
bination with reduction and conversion methods supports the fast
implementation of versatile analysis methods for linear hybrid sys-
tems.

• We put our library to practice and show its applicability by embed-
ding a flowpipe-construction-based reachability analysis method in
a CEGAR-based abstraction refinement framework. The paralleliza-
tion of this approach further increases its performance.

• We introduce methods to decompose the search space and re-
place high-dimensional computations by computations in lower-
dimensional subspaces. This method is applicable under certain
conditions. An automated check of these conditions, an automated
decomposition, and the integration of dedicated analysis methods
for subspace computations extend our approach.





Zusammenfassung

Unter hybriden Systemen in der Informatik versteht man Systeme, welche
diskretes als auch kontinuierliches Verhalten vereinen. In dieser Arbeit
werden Ergebnisse aus dem Bereich der Verifikation linearer hybrider Sys-
teme vorgestellt. Das kontinuierliche Verhalten der betrachteten Systeme
kann dabei durch lineare Differentialgleichungen beschrieben werden. Die-
se Arbeit beschäftigt sich im Besonderen mit der über-approximierenden
Erreichbarkeitsanalyse, in der die Menge der erreichbaren Zustände durch
eine endliche Vereinigung von Zustandsmengen approximiert wird. Zu-
standsmengen während der Berechnung werden dabei durch verschiedene
geometrische als auch symbolische Repräsentierungen dargestellt.

Die Wahl der Zustandsmengenrepräsentierung hat einen starken Ein-
fluss auf die Präzision der Approximation als auch auf die Laufzeit der
Analyse. Zusätzlich wird das Ergebniss der Analyse durch weitere Para-
meter und Heuristiken beeinflusst.

In dieser Arbeit erforschen wir den Einfluss und die optimale Ein-
stellung dieser Parameter. Unsere Ergebnisse sind in der öffentlichen C++
Bibliothek HyPro zur Verfügung gestellt. Die Beiträge dieser Arbeit
lassen sich in drei Teile gliedern:

• Wir präsentieren unsere HyPro Programmierbibliothek. Diese be-
inhaltet Implementierungen verschiedener Datentypen, die in Algo-
rithmen für die Erreichbarkeitsanalyse hybrider Systeme verwendet
werden können um Zustandsmengen hybrider Systeme zu repräsen-
tieren. Eine vereinheitlichte Schnittstelle zusammen mit Reduktions-
und Konvertierungsmethoden erlauben die schnelle Implementierung
von flexiblen Analysemethoden für lineare hybride Systeme.

• Wir zeigen die Anwendbarkeit der Methoden und Datenstrukturen
in HyPro anhand der Einbettung eines üblichen Erreichbarkeitsana-
lyseansatzes in ein Framework, in welchem eine schnelle aber grobe
Analyse iterativ durch die Verwendung von Gegenbeispielen verfei-
nert wird. Eine Parallelisierung des Ansatzes ist ebenfalls gegeben,
welche die Laufzeiten weiter verbessert.

• Die Einführung von Methoden, um teure Berechnungen in hoch-
dimensionalen Zustandsräumen durch weniger aufwendigen Berech-
nungen in niedrig-dimensionalen Zustandsräumen zu ersetzen. Die
vorgestellte Methode ist nur unter bestimmten Bedingungen ver-
wendbar. Wir präsentieren ein automatisiertes Verfahren, um die-
se Bedinungen zu überprüfen und wenn möglich solche niedrig-
dimensionale Räume zu identifizieren. Die Verwendung dedizierter
Verfahren für die Analyse bestimmter Unterklassen von hybriden
Systemen in Kombination mit der Entkopplung des Zustandsraumes
vervollständigen unseren Ansatz.
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1

Introduction

Technical and scientific development in the past decades has enabled us to
use more and more technical systems employing automation for our comfort
in our everyday life. The increase in the computational capabilities of digital
processors, as well as their low price, has led to a significant increase in their
usage in many ways.

Nowadays, integrated digital systems are used all around us for controlling
in various areas. Modern cars contain hundreds of digital controllers performing
all kinds of tasks needed for the correct operation of the vehicle. Recent devel-
opment in the field of autonomous driving has even increased the bond between
digital systems and continuous environments, establishing the usage of digital
systems in safety-critical applications. Not even considering fully autonomous
cars but already simple systems for public transport like autonomous monorail
trains at airports involve safety-critical components—the train should not only
brake when arriving at a certain gate but also be able to detect obstacles on
the track and react in time. Going further, digital controllers in planes or more
recently in crewless autonomous rockets perform highly critical tasks in which
a failure can lead to severe incidents. Another field where digital controllers
are involved are production plants, e.g., automated chemical plants or general
production facilities where digital (embedded) systems supervise and control
the behavior of the plant. Applications range from simple supervision using
sensors to controllers interacting with the system using actuators such as valves
and switches based on their sensing of the environment. An example could
be a digital controller which is supposed to keep the temperature of a liquid
in a chemical plant within a certain range by adjusting a heating device (see
Figure 1.1). Using temperature sensors, the controller observes the state of
its environment, i.e., the temperature and influences the system’s behavior
using its actuator in the form of a switch to operate the heating device. What
the aforementioned systems all have in common is the interaction of a digital
system with a continuous environment, thus being part of the large group of
cyber-physical system (CPS).

For every designed system we require that it operates correctly with respect
to some specification; this is even more important for safety-critical applications
in which human life is at stake or significant financial damage may be caused by
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    
heater

controller

x xout

Figure 1.1: Schematic of the liquid heating system consisting of a tank filled
with a liquid, a heating device and a controller to keep the liquid in the tank at
a certain temperature x.

erroneous behavior. Typical safety specifications exclude malicious behavior of
a system described as a set of states over the system’s quantities. Put differently,
in the absence of a specific behavior characterized by a set of system states we
can declare the system safe with respect to this set of states. Reconsidering our
chemical plant, a controller would try to exclude behavior where the temperature
of a liquid in a tank rises above a particular value—the system is considered
safe if this case never happens.

Testing as a method for estimating the correctness of a system’s behavior is
commonly used in various areas during the development to get an impression
about the system’s behavior. In those cases, the system is tested against
concrete test situations which may lead to hazardous situations and system
failure. While this method is usually a cheap approach to finding potential
errors in the system design, testing is not suitable for the verification of CPS or
more general for systems with an infinite state space. As testing considers a
potentially large but finite set of system executions, guarantees for the safety of
a system cannot be given for systems with an infinite state space; continuous
behavior as observed in CPS induces an infinite state space for system quantities
evolving continuously.

Formal verification as a method to guarantee the safety of hybrid systems
with respect to certain specifications has been in the focus of research in the
past decades. Being able to provide conclusive proofs in case of success, formal
verification is especially suited for the analysis and verification of safety-critical
systems. To be able to apply formal verification to a system, we need an
abstraction of said system, a model that reflects the relevant properties but
abstracts away unnecessary details. In our example of the chemical plant, it
does not matter whether the tank of liquid is blue or red. In contrast to that,
its volume or the amount of liquid instead do affect the way the temperature
inside the tank evolves.

Continuous behavior, in the following referred to as dynamics of (physical)
quantities, has been studied for a long time in engineering. The term dynamical
system which was mainly coined by Henri Poincaré [Poi92] and George David

2



Birkhoff [Bir27] characterizes the continuous behavior considered in this work.
In our example of the liquid-filled tank, we can describe the dynamics of the
temperature x without any heating influence as a linear ordinary differential
equation (ODE)

ẋ = K · (xout − x)

ẋout = 0

where ẋ, ẋout describe unknown time-dependent functions x(t), xout(t) by their
time derivatives ∂x

∂t respectively ∂xout
∂t . In our simplified model, we may use the

constant K to encode the influence of the surface of the tank and the thermal
conduction of the liquid. The evolution of the temperature of our liquid thus
is proportional to the difference between its temperature and the temperature
xout outside the tank. The initial value problem specifies a system of ODEs and
initial values for their variables and asks for time-dependent functions that are
solutions of the ODE system and that take at time point zero the given initial
values. For our example ODE system above and the concrete initial values
(x0, xout,0) ∈ R2, the solution for the fluid temperature is given as

x(t) = etA · x0

where the matrix exponential A depends on the constant K and xout,0.
While dynamical systems are mainly considered in engineering sciences, the

underlying models in computer science are mostly discrete, which is rooted in
the discrete operation of digital processors which discretely execute instructions
and sequences thereof (programs). The most simplistic models for programs are
state transition systems in which locations (depicted as circles) encode program
states and transitions (jumps) between them (depicted as arrows) indicate the
program flow. An arrow denotes the entry point of a program with no source
location—an execution of the program starts at this arrow’s target location and
step by step traverses the transition system. The observable behavior of the
program is reflected by a sequence of locations (which encode states) according
to the traversal of the transition system. Formal methods employ temporal
logic to validate properties of the program such as “it can never happen that
the program visits a certain location”. A transition system generalizes this
concept by adding a finite set of variables Var, and guards and variable resets
on discrete jumps. We can model the control-program of digital controller for
the exemplary chemical plant as the following transition system, where the
variable mode stores the system’s current control mode (mode = 1 denotes that
the heater is on, whereas mode = 0 encodes that the heater is off):

`0mode = 1

{on}
`1

{off}

mode = 1
mode := 0

mode = 0
mode := 1

3



1. Introduction

The state of a program in this model is reflected by a combination of the location
in which the control stays in and the current variable valuation.

For both model types, various techniques have been developed in the past to
analyze the properties of the respective system by analyzing the corresponding
model. The usage of digital controllers in a continuous environment demanded
a new modeling language—it is no longer sufficient to analyze continuous and
discrete parts of a combined system individually, as they may interact. Modeling
paradigms such as hybrid Petri nets [AD98; DA01] and hybrid automata [Hen96]
were introduced, which allow to model mixed discrete-continuous behavior. Our
plant example can be modeled by the following hybrid automaton, where K, Kh,
c0, and c1 are constants quantifying the thermal conduction, the influence of
the heater when turned on, and thresholds for the controller to switch between
modes (we have removed the variable mode storing the control mode):

`0
ẋ = K · (xout − x + Kh)

ẋout = 0

x ≤ xmax

x ∈ [18, 22]
xout = 20

{on}

`1
ẋ = K · (xout − x)

ẋout = 0

x ≥ xmin

{off}

x ≥ c0

x ≤ c1

The model unifies both discrete and continuous behaviors—the transition system
structure is used to model the discrete part, whereas in each location ordinary
differential equations model the evolution of time. The interaction between the
discrete and the dynamic behavior is modeled by the guards and variable resets
attached to the jumps, and by invariant conditions attached to the locations to
put boundaries on the dynamic behavior. States are now represented as a tuple
of a location (the discrete part) and a variable valuation (the dynamic part).
Similarly, we have to adapt specifications we want to verify by involving aspects
coming from the dynamic behavior, i.e., variable valuations. For instance, we
can now attempt to validate statements such as “it never happens that within
20 s the temperature rises above 65 ◦C”.

Computer scientists use model checking [BK08] as a formal approach towards
the safety verification of models such as LTS and variants thereof. Control
engineers, on the other hand, are interested in stability and robustness criteria
of dynamic systems. For hybrid systems new approaches were needed which
can prove safety not only based on the discrete structure but also considering
the continuous dynamic part of the model.

Hybrid systems safety verification can be done through reachability analysis
which tries to answer the question “is a certain set of bad states reachable in a
given hybrid system model starting from a defined set of initial states?”. As
the reachability problem for general hybrid automata is undecidable [HKP+98],
different approaches for semi-decision procedures have been developed. Bounded
model checking approaches encode bounded executions of a given hybrid au-
tomaton into logical formulas and utilize satisfiability modulo theories (SMT)
techniques to determine (bounded) safety [RS05; EFH08; GKC13]. Closely

4
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Figure 1.2: Over-approximation of the set of reachable states by boxes for the
tank-example (petrol), exemplary trajectories (green) and the set of undesired
behavior (red). The plot shows the temperature x (vertical axis) over time
(horizontal axis).

related, approaches based on theorem proving axiomatize a theory for hybrid
systems to formally specify their behavior as hybrid programs and use semi-
automated theorem provers to derive their safety [PQ08]. Approaches using
rigorous simulation attempt to validate safety by simulating a finite set of
traces for a given system together with rigorous extrapolation to the full set
of traces. In this work, we focus on flowpipe-construction-based reachability
analysis for linear hybrid systems. In this method, the set of reachable states is
over-approximated by a set of sets represented by geometric shapes [FLD+11;
CÁS13; Alt15]. Based on approaches like orthogonal polyhedra [Dan00], ori-
ented rectangular hulls [SK03], or zonotopes [Gir05] a general reachability
analysis algorithm for flowpipe-construction-based methods was established and
continuously improved to reduce over-approximation errors and computational
effort [Le 09]. Improvements towards the scalability by using different state
set representations, for instance support functions [LG10; FR12; FKL13], using
decomposition and reduction methods [BD17a; BFF+18], or by employing
parallelized approaches [GRB+18] were proposed. Another branch of research
aimed at improving the precision of the over-approximation [FKL13; BFG+17].

Considering our tank example, we can over-approximate the set of dynamic
evolutions starting from the initial state using constants K = 0.1 and Kh = 18
and boxes to represent state sets (see Figure 1.2). The over-approximation of
the set of reachable states by a sequence of boxes guarantees that all trajectories
up to a time bound (example trajectories in green) are fully contained in the

5
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union of the boxes. This approach enables us to use the set of boxes to verify
safety properties—instead of arguing about the continuous functions describing
the system’s dynamics we can argue about a set of convex sets. For instance, we
are now able to validate the statement “After 2 s the temperature is invariantly
above 20 ◦C” by computing an intersection of the set of malicious behavior (red)
with the approximation of the set of reachable states. As the intersection is
empty, the statement holds for all executions starting in the set of initial state
up to a time bound of 5 s.

Mode changes, i.e., the discrete behavior can be handled using the approx-
imation of the set of reachable states as well; in our example in those parts
of boxes that intersect the half-space x ≥ c0 the discrete jump to location `off
might be enabled. We also observe that boxes might not be the best set to
approximate our trajectory; instead, we might want to consider a more tight
approximation using a different state set representation to over-approximate
the set of trajectories.

Using state of the art flowpipe-construction-based reachability analysis methods
as a basis for our development, in this work we aim at improving existing
approaches by investigating the following questions:

• How can we efficiently represent state sets? How can different state
set representations be incorporated into a flowpipe-construction-based
reachability analysis method?

• How can we extend existing approaches to obtain a scalable method for
flowpipe-construction-based reachability analysis?

• How can we exploit system features and domain-specific knowledge to our
advance?

Our answers and results to these research questions are presented in the course
of this work. After having introduced preliminary information and notation in
Chapter 2, we will provide a more thorough introduction to hybrid systems,
hybrid automata and flowpipe-construction-based reachability analysis in Chap-
ter 3. Our work starts with a collection of examples for hybrid systems and an
overview on challenges that tool developers have to face when creating a flow-
pipe-construction-based reachability analysis tool for hybrid systems. Chapter 6
will present our work on the first research question describing our collection of
state set representations. In Chapters 7 and 8 we present our improvements
which are based on the previous chapters. In the following, we discuss our
contributions in more detail, followed by a list of publications this work is based
on.

1.1 Contributions

The main contributions of this thesis are presented in the Chapters 4 to 8. In
the following, we describe our main contributions along with pointers to the
respective sections.
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1.1. Contributions

Hybrid Systems: Examples and Challenges. Our first publications relevant
for this dissertation focus on the state of the art in hybrid systems safety
verification to establish a foundation for our research. Our collection of bench-
marks [CSB+15] for hybrid systems reachability analysis as a basis for future
experimental evaluations provides details about the type and characteristics of
individual hybrid systems in industry and academia. During this phase, we ob-
tained an overview of the landscape of flowpipe-construction-based reachability
analysis for hybrid systems and were able to gain insights into open problems
that need to be tackled by future tool developers [SÁC+15]. Our main results
from this phase are as follows:

• We provide a collection of benchmarks along with a classification of the
considered models which complements existing collections of benchmarks.

• We identify challenges relevant for tool developers that need to be ad-
dressed to improve the applicability of hybrid systems safety verification.

A Programming Library for State Set Representations. In the context of the
HyPro-project1 funded by the German research council we put our previously
gained knowledge into practice by developing our C++-library HyPro for state
set representations for hybrid systems reachability analysis [SÁB+17]. With a
diverse collection of state set representations at hand, we enhanced our library by
algorithms and data structures required to set up a state of the art reachability
analysis method which allowed us to get promising experimental results on the
collected benchmarks. We achieved the following goals during this phase:

• We created and published a C++-library for state set representation for
flowpipe-construction-based reachability analysis for linear hybrid systems.

• We extended our library with data structures and algorithms that are
typically needed for many reachability analysis approaches to further assist
the tool development in the area of hybrid systems safety verification.

CEGAR with Partial Path Refinement. On top of the development of HyPro,
we addressed some of the challenges identified in the earlier phase of this work
by implementing a CEGAR method using partial path refinement [SÁ18a].
CEGAR stands for counterexample-guided abstraction refinement. Its idea
is to use an over-approximative abstraction of the system and if spurious
counterexamples are detected in the abstraction then to refine it to exclude the
found and other “similar” spurious counterexamples. The refinement step in
our approach is done by recomputing reachability along found counterexample
paths using search configurations that lead to more precise computations. For
the refinement steps, we utilize strategies that define a sequence of analysis
parameter configurations which typically come with increasing computational
effort but reduced approximation error. During the refinement we reuse as
much of the previous computations as possible, which leads to what we call
partial path refinement. The usage of high-precision configurations only when

1https://ths.rwth-aachen.de/research/projects/hypro/ (checked July, 30th, 2019)
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required resulted in promising experimental results. Following this thread, we
also worked on the parallelization of our approach [SÁ18b] as an extension to
partial path refinement. Achievements of this phase include:

• The development of a generalized CEGAR-based approach for partial
path refinement in hybrid systems reachability analysis.

• The successful implementation of this approach in a tool prototype based
on HyPro. The author did most implementation work; parts of the
presented refinement approach have been implemented during the Master’s
thesis of Dustin Hütter [Hüt16].

• The extension of our approach towards the application in a multi-threaded
environment.

Subspace Decomposition. In the context of a collaboration with my colleague
Johanna Nellen we extended the HyPro-library to set up a dedicated reachabil-
ity analysis method for PLC-controlled plants based on subspace decomposition
of hybrid automata [SNÁ17]. The main idea is to divide the variables into
subsets and to compute the evolution independently for each subset, instead
of computing it globally in a high-dimensional space for all variables at the
same time. Additionally, if the variables in a subset have commonalities in their
dynamics, then dedicated reachability analysis techniques might be applicable
to reduce the computational costs and to increase the precision. Exploiting
the modular nature of the HyPro-library together with the diverse collection
of state set representations, we were able to obtain interesting experimental
results that gave ideas for further research. While our first approach was static
in the sense that a subspace decomposition had to be provided by the user, in
the following year we published the extension of this approach for an automated
on-the-fly decomposition [SWÁ18]. In this work, we also extended HyPro with
state of the art approaches for timed automata, a subclass of general hybrid
automata. An additional extension for the analysis of rectangular automata,
a subclass of general hybrid automata and a super-class of timed automata,
was recently added to our library [SÁ19]. Essential contributions of this phase
include:

• The development of a state space decomposition approach.

• The implementation of this approach extended with a graph-based method
to automatically synthesize state space decompositions during analysis.

• An extension of the HyPro library with specialized reachability analysis
methods for subclasses of hybrid systems which is integrated into our
decomposition method.

HyPro and HyDRA Tools. All implementations mentioned earlier have been
made publicly available; HyPro as an open-source library, HyDRA as an
executable. We have participated with our implementation in the ARCH
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Competition2 each year since its launch in 2017. There are not so many
tools available in this area, and those that are available support the analysis of
different hybrid system types and offer specialized analysis techniques. Therefore
it is not easy to fairly compare their results. Still, in a friendly competition,
the tool developers are encouraged to participate and exchange ideas. The
results of this friendly competition from 2017 until 2019 have been published
in [ABC+17; ABC+18; ABF+19].

For repeatability all benchmarks and configurations used for the experimental
evaluations are available online3.

1.2 Publications

In the following section, we will present publications relevant for this dissertation
together with a summary of the content of each publication and a paragraph
about my contributions to this publication. All publications mentioned were
written together with my supervisor Erika Ábrahám.

Relevant Publications

[SÁC+15] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran
Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. “Current
Challenges in the Verification of Hybrid Systems”. In: Proc. of CyPhy’15.
Vol. 9361. Information Systems and Applications, incl. Internet/Web,
and HCI. Springer, 2015, pp. 8–24. doi: 10.1007/978-3-319-25141-7_2

In this survey paper, we discuss state-of-the-art reachability analysis
methods for hybrid systems with a focus on flowpipe-construction-based
approaches. After an introduction to the topic, we describe current
tools along with their characteristics regarding the type of approach
they implement, the type of dynamics they can handle, and special
distinguishing features. In an experimental evaluation, we apply some
of the tools to a selection of benchmarks and identify strengths and
limitations of tools. In conclusion to this, we present a collection of open
problems that need to be addressed in the future to increase the usability
of hybrid systems safety verification methods for industrial and academic
applications.
In this paper, I worked on the description of tools along with their features
and carried out the experimental evaluation. Furthermore, I contributed
to the identification of open problems and challenges in hybrid systems
reachability analysis.

[CSB+15] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran
Frehse, and Stefan Kowalewski. “A Benchmark Suite for Hybrid Systems
Reachability Analysis”. In: Proc. of NFM’15. Vol. 9058. LNCS. Springer,
2015, pp. 408–414. doi: 10.1007/978-3-319-17524-9_29

2https://cps-vo.org/group/ARCH/FriendlyCompetition (checked July, 30th, 2019)
3https://ths.rwth-aachen.de/people/stefan-schupp/repeatability/
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In this paper, we present a collection of benchmarks for flowpipe-con-
struction-based reachability analysis for hybrid systems. Our collection
contains a variety of linear and non-linear hybrid systems along with safety
specifications. For each benchmark we give a description of the underlying
system, a classification concerning syntactic properties, identify specific
challenges, and provide model files for SpaceEx and Flow*. We evaluate
the tools SpaceEx, Flow*, and DReach on the presented benchmarks.
I worked on the experimental evaluation of the linear benchmarks and the
translation between different input languages. Furthermore, I contributed
to the collection and presentation of the benchmarks.

[SÁB+17] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. “HyPro: A C++ Library for State Set Representations for
Hybrid Systems Reachability Analysis”. In: Proc. of NFM’17. Vol. 10227.
LNCS. Springer, 2017, pp. 288–294. doi: 10.1007/978-3-319-57288-
8_20

In this work, we publish HyPro, our C++-library for state set representa-
tions for the flowpipe-construction-based reachability analysis of linear
hybrid systems. We present the range of features implemented in the
library with a focus on the potential usage of different implementations of
number types during computation. In an experimental evaluation, we com-
pare the running times of a state-of-the-art flowpipe-construction-based
reachability analysis algorithm on a selection of benchmarks by using
multiple different number types, various state set representations and
multiple backends for linear optimization performed during the analysis.
We compare the running times of those configurations with results from
SpaceEx.
My contribution to this work was the setup and implementation of the
library HyPro. I provided its implementation except for the implemen-
tation of zonotopes and Taylor models which were provided by Ibtissem
Ben Makhlouf respectively Xin Chen. Parts of the library were imple-
mented in the course of the theses from Christoph Kugler [Kug14], Simon
Froitzheim [Fro16], Phillip Florian [Flo16], Igor Bongartz [Bon16], and
Sabrina Kielmann [Kie18], which I supervised. I obtained the experimen-
tal results by using my implementation of a flowpipe-construction-based
reachability analysis method, which is also contained in the HyPro
distribution, and ran the experiments for SpaceEx.

[SNÁ17] Stefan Schupp, Johanna Nellen, and Erika Ábrahám. “Divide and Con-
quer: Variable Set Separation in Hybrid Systems Reachability Analysis”.
In: Proc. of QAPL’17. Vol. 250. EPTCS. Open Publishing Association,
2017, pp. 1–14. doi: 10.4204/eptcs.250.1

In this collaboration with my colleague Johanna Nellen, we aimed at
improving reachability analysis methods for plants controlled by pro-
grammable logic controllers (PLCs). We model a closed-loop control of
a PLC-controller and a plant as a hybrid automaton with urgent tran-
sitions to reflect the control flow of the PLC program. We extend our
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flowpipe-construction-based reachability analysis method by exploiting
domain-specific knowledge about clocks and about program variables that
do not evolve continuously. Our experimental results indicate that sub-
dividing a model into syntactically independent subspaces is promising.

My part in this work was the adaption of the reachability analysis method
towards the analysis of syntactically independent subspaces and a method
to handle urgent transitions in HyPro. The first adaption allows handling
variables that do not evolve continuously as well as clocks separately
to reduce the state space dimension for the analysis of the remaining
continuously evolving variables. I am the main author of the paper and
wrote major parts of it.

[SÁ18a] Stefan Schupp and Erika Ábrahám. “Efficient Dynamic Error Reduction
for Hybrid Systems Reachability Analysis”. In: Proc. of TACAS’18.
Vol. 10806. LNCS. Springer, 2018, pp. 287–302. doi: 10.1007/978-3-
319-89963-3_17

In this work, we present a counterexample-guided abstraction refinement
(CEGAR) approach for flowpipe-construction-based reachability analysis
methods. This approach aims to increase the efficiency of current reach-
ability analysis methods by selectively increasing the precision of the
analysis on potential counterexample paths. This is realized by utilizing
multiple analysis parameter configurations with different levels of preci-
sion during the analysis. The change of parameters is triggered whenever
a potential counterexample path is discovered and this specific path is
refined using a different analysis parameter configuration, leading to a
more precise approximation of the set of reachable states on this path
and with the aim to declare a counterexample spurious.

My contribution to this work lies in the development of the method,
its implementation in HyPro and its evaluation, assisted by the thesis
students Dustin Hütter [Hüt16] and Johannes Neuhaus [Neu16]. I am the
primary author and I wrote major parts of this paper.

[SÁ18b] Stefan Schupp and Erika Ábrahám. “Spread the Work: Multi-threaded
Safety Analysis for Hybrid Systems”. In: Proc. of SEFM’18. Vol. 10886.
LNCS. Springer, 2018, pp. 89–104. doi: 10.1007/978-3-319-92970-5_6

In this work, we present a parallelized version of our flowpipe-construction-
based reachability analysis, which is compliant with our counterexample-
guided abstraction refinement (CEGAR)-approach of partial path refine-
ment. Based on previous design concepts for flowpipe-construction-based
reachability analysis methods [FR09], we modularize our approach and
switch to a worker-based method. We discuss aspects specific to the
parallelization, i.e., synchronization and locking in data structures during
the analysis, as well as methods for work balancing during running time.

With the assistance of the thesis student Johannes Neuhaus [Neu16], I
have set up a dedicated tool HyDRA which is based on HyPro and
implements our CEGAR-approach in a parallelized way. Apart from
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working on the implementation, I evaluated the approach. I am the main
author and I wrote major parts of the paper.

[SWÁ18] Stefan Schupp, Justin Winkens, and Erika Ábrahám. “Context-dependent
Reachability Analysis for Hybrid Systems”. In: Proc. of FMI’18. IEEE
Computer Society Press, 2018, pp. 518–525. doi: 10.1109/IRI.2018.
00082

In this paper, we extend our approach of analyzing syntactically inde-
pendent sets of variables. We present an automated technique that can
detect decompositions of a given hybrid automaton. Furthermore, we
extend our portfolio of available approaches by adding a state-of-the-art
analysis method for timed automata. In combination with syntactic de-
compositions, this allows analyzing hybrid automata containing clocks
more efficiently by using decomposition and tailored approaches for the
analysis of subspaces.
Together with the thesis student Justin Winkens [Win18], we implemented
the analysis method for timed automata in HyPro along with an au-
tomated state space decomposition method. Furthermore, we created a
modularized version of HyDRA in which workers are composed of indi-
vidual handlers. We evaluated our approach on a selection of benchmarks.
I am the main author and wrote most parts of this paper.

[SÁ18c] Stefan Schupp and Erika Ábrahám. “The HyDRA Tool – a Playground
for the Development of Hybrid Systems Reachability Analysis Methods”.
In: Proc. of the PhD Symposium at iFM18 (PhD-iFM18). University of
Oslo, 2018, pp. 22–23
In this extended abstract, we present the HyDRA tool, in which all
previously presented approaches are combined into one flowpipe-construc-
tion-based reachability analysis tool for linear hybrid systems.
I wrote major parts of this paper summing up our previous work.

Further Publications

• Jó Ágila Bitsch Link, Christoph Wollgarten, Stefan Schupp, and Klaus
Wehrle. “Perfect Difference Sets for Neighbor Discovery: Energy Efficient
and Fair”. In: Proc. of ExtremeCom’11. ACM Press, 2011, 5:1–5:6. doi:
10.1145/2414393.2414398

• Stefan Schupp. “Interval Constraint Propagation in SMT-compliant
Decision Procedures”. MA thesis. RWTH Aachen University, 2013

• Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. “SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving”. In: Proc. of SAT’15. Vol. 9340. LNCS.
Springer, 2015, pp. 360–368. doi: 10.1007/978-3-319-24318-4_26

• Jannik Hüls, Stefan Schupp, Anne Remke, and Erika Ábrahám. “Ana-
lyzing Hybrid Petri Nets with Multiple Stochastic Firings Using Hypro”.
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In: Proc. of VALUETOOLS’17. ACM Press, 2017, pp. 178–185. doi:
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• Matthias Althoff, Stanley Bak, Dario Cattaruzza, Xin Chen, Goran Frehse,
Rajarshi Ray, and Stefan Schupp. “ARCH-COMP17 Category Report:
Continuous and Hybrid Systems with Linear Continuous Dynamics”. In:
Proc. of ARCH’17. Vol. 48. EPiC Series in Computing. EasyChair, 2017,
pp. 143–159. doi: 10.29007/4dcn

• Matthias Althoff, Stanley Bak, Xin Chen, Chuchu Fan, Marcelo Forets,
Goran Frehse, Niklas Kochdumper, Yangge Li, Sayan Mitra, Rajarshi Ray,
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2018, pp. 23–52. doi: 10.29007/73mb
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2

Preliminaries

In this chapter, we present some preliminaries and basic notations which will
be used throughout this work. We begin with presenting relevant information
about sets in Section 2.1 and linear algebra in Section 2.2. Section 2.3 provides
further information about closed convex sets, their representation and general
operations on sets. In Section 2.4 we discuss intervals, interval arithmetic and
operations on intervals.

2.1 Sets

The cardinality |A| ∈ N ∪ {∞} of a set A is the number of elements in A. We
call a set empty (notation A = ∅) if |A| = 0, finite if |A| ∈ N, and infinite
if |A| = ∞ holds. We typically use uppercase letters (e.g., I, S) for sets and
lowercase letters for set elements (e.g., s ∈ S or i ∈ I). This applies also to
variables: lowercase letters denote variables and uppercase letters denote sets of
variables (e.g., x ∈ V). We use the standard set operators A ∩ B, A ∪ B, A × B
and predicates A ⊂ B, A ⊆ B to represent intersection, union, cartesianProduct,
properContainedness and containedness of two sets A and B. We use 2A to
denote the set of all subsets of A.

We use R to denote the set of all real numbers, N for the set of natural
numbers including zero, and Q for the set of rational numbers. We may use a
subscript to limit those sets, i.e., R>0 refers to the strictly positive real numbers.
We use the usual arithmetic operators +,−, ·,÷ and relational operators ≤,<
,=,>,≥ on numbers with their standard semantics; we sometimes use standard
simplifications in the notation, e.g., we write xy for x · y. We use Rd, d ∈ N>0,
to refer to the d-dimensional (Euclidean) real vector space, which is the d-ary
Cartesian product of R, i.e., the set of all d-tuples (a0, . . . , ad−1) of real numbers
ai ∈ R, i = 0, . . . , d − 1; we use similar notations for other number sets. We use
an underscore as a wildcard character to denote that an element of a tuple may
take any value from its domain, i.e., the expression A = (_, _, 1) ∈ R3 denotes
the set of all 3-tuples of real numbers where the third element equals one.
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2.2 Vectors and Matrices

This section recapitulates basic concepts and notations from linear algebra used
throughout this work. We assume the reader is familiar with linear algebra
over the real numbers and refer to works such as [Art91] for further details. An
element x ∈ Rd in the d-dimensional real space is called a vector.

Definition 2.1: Vector

A d-dimensional (real) vector x ∈ Rd (d ∈ N>0) is an ordered sequence
of d real values x0, . . . , xd−1 ∈ R called coordinates. A column vector is
ordered vertically

x =

 x0
...

xd−1

 .

whereas a row vector is ordered horizontally (x0, . . . , xd−1). Transposition
xT transformes a column vector x into a row vector of the same dimension
with the same entries and vice versa, the transpose of a row vector is a
column vector.

We use small letters for vectors and always assume vectors to be column
vectors unless stated differently (in this case we refer to it as a row vector). In
this work, we sometimes use the notion vector and point in the d-dimensional
vector space Rd interchangeably. We use the notation ‖x‖p (p ∈ N>0) to denote
the p-norm for a vector x = (x0, . . . , xd−1) following the classical definition

‖x‖p =

(
d−1

∑
i=0

|xi|p
)1/p

.

where | · | is the absolute value of the given argument. Arithmetic operations
on vectors are defined in a component-wise manner.

Definition 2.2: Vector Arithmetic

The addition of two d-dimensional vectors x, y ∈ Rd is defined as follows:

x + y = (x0 + y0, . . . , xd−1 + yd−1) ,

multiplication of a vector x ∈ Rd with a scalar λ ∈ R is also defined
component-wise as · : (R × Rd) → Rd with

λ · x = (λ · x0, . . . , λ · xd−1) .

Vectors from Rd with vector addition and scalar multiplication build a
vector space over R. The zero vector 0 = (0, . . . , 0) ∈ Rd, referred to as the
origin, is the additive identity. The multiplicative identity is 1 ∈ R. For each
vector x, the additive inverse is (−x) = (−1) · x, such that x + (−x) = 0.
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Apart from component-wise operations, the dot product between two vectors
is of interest, as it defines a notion of angles between the two vectors.

Definition 2.3: Dot-product

The scalar product (sometimes dot product) of two d-dimensional vectors
x, y ∈ Rd is defined as

〈x, y〉 =
d−1

∑
i=0

xi · yi .

Note that scalar product is not a group operation, as the result of the
product of two vectors is a scalar. Two vectors x, y ∈ Rd are orthogonal to each
other, if their scalar product equals zero:

x ⊥ y ⇔ 〈x, y〉 =
d−1

∑
i=0

xi · yi = 0 .

We call the (column) vectors x0, . . . , xn−1 ∈ Rd (n ∈ N>1) linearly dependent if

∃λ0, . . . , λn−1 ∈ R.

(
n−1∨
i=0

λi 6= 0

)
∧

n−1

∑
i=0

λi · xi = 0

holds, otherwise x and y are called linearly independent. Row vectors are linearly
dependent if their transpose are linearly dependent, and linearly independent
otherwise.

A matrix is a collection of elements, rectangularly ordered in rows and
columns. Here we consider real values as matrix elements.

Definition 2.4: Matrix

A (real-valued) matrix A of dimension n × m is a collection of n · m real
numbers arranged in a rectangular array with n rows and m columns:

A =

 a0,0 · · · a0,m−1
... . . . ...

an−1,0 · · · an−1,m−1

 .

The set of all matrices of dimension n × m is denoted by Rn×m. The
matrix entry at row i and column j in matrix A is referenced by ai,j,
while we use ai_ to reference the i-th row and consequently a_j to refer
to the j-th column of A.

A matrix A ∈ Rn×m can also be seen as a set of m column vectors in Rn,
or analogously as a set of n row vectors in Rm. Consequently, an n-dimensional
(column-)vector x ∈ Rn can be seen as a matrix with a single column, i.e.,
x ∈ Rn×1. A matrix A ∈ Rn×m is called quadratic or square, if n = m holds.
The transpose of a matrix A ∈ Rn×m is the matrix AT = B ∈ Rm×n with
bi,j = aj,i.
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x1

x0

Figure 2.1: A vector field in R2 induced by the mapping Ax = (2x0,−0.5x1).

Arithmetic operations on matrices are used with the usual semantics, i.e.,
matrix addition + : (Rn×m × Rn×m) → Rn×m and multiplication · : (Rn×p ×
Rp×m) → Rn×m are defined as A+ B = C and D · E = F with

ci,j = ai,j + bi,j and fi,j = 〈dT
i_, e_j〉

for all n, m, p ∈ N>0, A,B, C,F ∈ Rn×m, D ∈ Rn×p, E ∈ Rp×m, i = 0, . . . , n−
1 and j = 0, . . . , m − 1. Furthermore, multiplication of a matrix with a scalar is
defined as λ · A = A · λ = B with

bi,j = λ · ai,j

for all n, m ∈ N>0, A ∈ Rn×m, λ ∈ R, i = 0, . . . , n − 1 and j = 0, . . . , m − 1.
Matrices from Rn×m with matrix addition and scalar multiplication build a

vector space over R. The matrix additive identity is the zero matrix 0 ∈ Rn×m

whose entries are all zero. Additive inverse of A is (−1) · A. The scalar
multiplicative identity is 1 ∈ R. Furthermore, for square matrices, additionally
considering matrix multiplication yields an associative algebra; the matrix
multiplicative identity is the identity matrix Id ∈ Rd×d with diagonal entries
ai,i = 1, i = 0, . . . , d − 1, and all other entries being 0.

The rank of a matrix A, written rankA, refers to the dimension spanned
by its column vectors, which is equivalent to the maximal number of linearly
independent columns in A. This is equivalent to the dimension spanned by its
row vectors, i.e., the maximal number of linearly independent rows in A. A
matrix A ∈ Rn×m is said to be of full rank if rankA = min(n, m) holds.

A square matrix A ∈ Rd×d is called invertible if it has a multiplicative
inverse A−1 with A · A−1 = A−1 · A = Id. This is the case if and only if
rankA = d. Matrices are referred to as being non-singular or non-degenerate
if they are invertible and consequently as singular or degenerate if they cannot
be inverted.

For vectors x ∈ Rd, we interpret (left) multiplication by a square matrix
A ∈ Rd×d as a linear transformation of x by A:

A · x =
(
〈aT

0_, x〉, . . . , 〈aT
d_, x〉

)T
.
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Using this intuition, later we will interpret a square matrix A ∈ Rd×d as a linear
mapping A : Rd → Rd that assigns to each x ∈ Rd its translate A · x ∈ Rd (see
Figure 2.1) to describe the dynamic behavior of certain hybrid system models.

We can use linear mappings A : Rm → Rn also for projections. In the scope
of this work, we will restrict ourselves to projections along coordinate axes. For
general projections on subspaces of Rd, we refer to [Zie95].

Definition 2.5: Projection on Orthant Planes

Let S ⊆ Rd and I ⊆ {0, . . . , d − 1}. Let f : |I| → I be a bijective
monotone function. The projection S ↓I of S to I is the set{

(y0, . . . , y|I|−1)
∣∣∣ (x0, . . . , xd−1) ∈ S ∧ (∀i ∈ I.y f (i) = xi)

}
.

We can use a linear mapping P : Rd → R|I| to project a set to I, using the
matrix A ∈ R|I|×d with entries

aij =

{
1 j ∈ I ∧ i = f (j)
0 otherwise.

.

Example 2.1: Projection

For projecting subsets of R3 to I = {0, 2}, the projection matrix is
defined as follows: (

1 0 0
0 0 1

)
.

Applying this projection to a point (4, 5, 6)T ∈ R3 yields:

(
1 0 0
0 0 1

)
·

 4
5
6

 =

(
4
6

)
.

Linear Real Arithmetic

As we use Cartesian coordinates to represent elements in Rd, we can use linear
equations and linear inequations to describe partitions of Rd.

Definition 2.6: Linear Polynomial

A linear polynomial p over a finite ordered set of variables Var =
{x0, . . . , xd−1} is defined as

ad +
d−1

∑
i=0

ai · xi,

a0, . . . , ad ∈ R. We define Var(p) = {xi ∈ Var | ai 6= 0} and call p
univariate if |Var(p)| = 1 holds.
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Using this definition we can formalize linear constraints as a comparison of
a linear polynomial to a constant.

Definition 2.7: Linear Constraint

A linear real-arithmetic constraint c over a finite ordered set of variables
Var has the (normal) form

c : p ∼ 0

where p is a linear polynomial over Var and ∼ ∈ {<,≤,=,>,≥} is
a comparison predicate. The constraint c is called univariate if p is
univariate.

Besides the above normal forms (e.g., 2 + 2x > 0) for linear polynomials
and constraints, we will also use equivalent representations that we gain by
standard transformations (e.g., 3x − x > −2); note that all linear polynomials
resp. constraints can be easily brought to the above normal forms. The solution
set of a linear constraint c : p ∼ 0 over Var = {x0, . . . , xd−1} is defined as
Satc = {m ∈ Rd | m |= c}; it contains all variable assignments m that satisfy c,
i.e., that evaluate c to true when we substitute mi for xi for i = 0, . . . , d − 1 (see
Example 2.2).

Example 2.2: Solution Set

Let p : x0 − x1 be a linear polynomial over variables Var = {x0, x1}.
The solution set Satc for c : p = 0 contains all models m ∈ R2 with
assignments for x0, x1 where x0 = x1 holds, i.e.,

Satc =
{
(m0, m1) ∈ R2

∣∣∣ m0 = m1

}
such that the set of points in Satc defines a line in R2. Changing the
relation to c′ : p ≤ 0 yields

Satc′ =
{
(m0, m1) ∈ R2

∣∣∣ m0 ≤ m1

}
which defines a half-space in R2 as defined below.

Definition 2.8: Half-space

A d-dimensional half-space h is a set

h =
{

x ∈ Rd
∣∣∣ nT · x ≤ c

}
for some n ∈ Rd and c ∈ R. We refer to n as the normal vector of h
and to c as the offset of h. The set h̄ = {x ∈ Rd | nT · x = c} is called
the bounding hyperplane of the half-space h.

We can represent a half-space h as a tuple (n, c), where n ∈ Rd and c ∈ R,
which represents the set {x ∈ Rd | nT · x ≤ c}.

20



2.2. Vectors and Matrices

x1

x00

n

h

Figure 2.2: Geometric representation of a half-space h (petrol) in R2. The
bounding hyperplane is given by the equation 2x0 + x1 = 1.5.

Variable Elimination

For a Boolean conjunction ϕ =
∧n−1

j=0 cj of linear constraints over variables
Var = {x0, . . . , xd−1}, variable elimination techniques such as Fourier-Motzkin
variable elimination [Fou27; Mot36] and Gaussian elimination for equational
constraints can be applied to eliminate a variable xk and obtain a satisfia-
bility-equivalent formula ϕ′ =

∧m−1
j=0 c′j over the remaining variables Var =

{x0, . . . , xk−1, xk+1, . . . , xd−1}.

Gaussian Variable Elimination. It can be used to eliminate a variable xk ∈ Var
from ∧n−1

j=0 cj if there is an l ∈ {0, . . . , n − 1} such that

cl : al,d +
d−1

∑
i=0

al,ixi = 0

with al,k 6= 0. The idea is to transform cl to the form xk = p′l with

p′l =
−al,d

al,k
+ ∑

i=0,...,k−1,k+1,...,d−1

−al,i

al,k
xi,

replace in each constraint cj the variable xk by p′l yielding c′j, and return ∧n−1
j=0 c′j.

Fourier-Motzkin Variable Elimination. Fourier-Motzkin variable elimination
can be used to eliminate a variable xk from a conjunction of linear constraints
over variables Var, and achieve a satisfiability-equivalent conjunction of linear
constraints over Var \ {xk}. This method can also be applied to equational
constraints; however, using Gaussian elimination for a system of linear equalities
is more efficient, which is why in the following we only consider systems of
inequalities. Assume a Boolean conjunction ϕ =

∧n−1
j=0 pj ∼j 0, ∼j∈ {<,≤,≥

,>} of linear inequalities over the variable set Var = {x0, . . . , xd−1}.
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Let I be the set of all incides j ∈ {0, . . . , n − 1} with xk /∈ Var(pj). For all
other indices j ∈ {0, . . . , n − 1} \ I, we transform the constraint

cj : aj,d +
d−1

∑
i=0

aj,ixi ∼j 0

with aj,k 6= 0 to the form xk ∼′
j p′j with

p′j =
−aj,d

aj,k
+

d−1

∑
i=0,i 6=k

−aj,i

aj,k
xi,

and with ∼′
j being ∼j for aj,k > 0 and otherwise ∼′

j is ≥,>,<,≤ for ∼j being ≤
,<,>,≥ respectively. Let Il contain those such indices l for which ∼′

l∈ {≥,>},
Iu those indices u with ∼′

u∈ {≤,<}, and let ∼l,u be ≤ if ∼′
l ,∼

′
u∈ {≤,≥} and

< otherwise. The resulting formula is ϕ′ = (∧j∈Icj) ∧ (∧l∈Il
∧u∈Iu p′l ∼l,u p′u).

Example 2.3: Fourier-Motzkin Variable Elimination

Consider the formula

ϕ = x +
5
2

y ≤ 23
2

∧−x +
1
4

y ≤ −1
2
∧

x − 1
2

y ≤ 5
2
∧−x − 2y ≤ −5.

To eliminate x, we rearrange the constraints and identify lower (under-
lined) and upper (overlined) bounds for x:

⇔ x ≤ −5
2

y +
23
2

∧ 1
4

y +
1
2
≤ x∧

x ≤ 1
2

y +
5
2
∧−2y + 5 ≤ x .

After combining lower and upper bounds for x, we obtain a satisfiability-
equivalent formula only in y:

⇔ 1
4

y +
1
2
≤ −5

2
y +

23
2

∧−2y + 5 ≤ −5
2

y +
23
2
∧

1
4

y +
1
2
≤ 1

2
y +

5
2
∧−2y + 5 ≤ 1

2
y +

5
2

⇔ 1 ≤ y ∧ y ≤ 4 .

The graphical representation of the original constraint set and the result
of the variable elimination is shown below.
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y

x

(
1

2.5

)

(
1

−0.5

)
(
−1
−2

)

(
−1
0.25

)

Intuitively, the elimination of x in this example corresponds to a projec-
tion of the set specified by ϕ along the x-axis (see Definition 2.5).

As Fourier-Motzkin variable elimination combines lower and upper bounds
to create new constraints, the resulting formula ϕ′ may contain at most n2

constraints where n denotes the number of constraints in the original formula
ϕ. To improve this behavior, heuristics exist which allow to discard some
combinations of lower and upper bounds a priori [Imb90]. Furthermore, in the
case of ϕ containing equations in xk, Gaussian elimination should be favored,
as it does not increase the number of constraints. Consequently, equations of
the form p = xk should not be replaced by two inequations p ≤ xk ∧ p ≥ xk
during pre-processing of the formula.

2.3 Geometric Sets

In this section, we will introduce basic concepts of convex sets in Rd and their
representation required for the remainder of this dissertation. In the previous
section, we have already introduced the notion of a point in Rd which represents
the 0-dimensional affine subspace in Rd. In geometry, concepts such as points,
lines, planes and hyperplanes play an important role—they represent affine
subspaces of dimension 0, 1, 2, and d − 1 of the vector space Rd, and are
sometimes also referred to as flats. Thus, non-empty affine subspaces are the
translates of linear vector spaces [Zie95]. The dimension of an affine subspace
(sometimes affine dimension) is the dimension of the corresponding vector space.
We use the operator dim A to refer to the affine dimension of A. As indicated
in the previous section, flats are the geometric representation of solution sets
Sat of systems of linear equations.

Convex Sets

This section is based on [Zie95] and provides basic information about convex
sets, which will be needed to understand the concepts of convex polytopes.
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v0

v1

v2

v3

v4 y

x

Figure 2.3: A compact convex set represented as the convex hull of its vertices
v0, . . . , v4.

A set S ⊆ Rd is called convex, if for any two points x, y ∈ S all points of
the line segment xy between x and y are also in S, i.e., if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. (λx + (1 − λ)y) ∈ S . (2.1)

A set S ⊆ Rd is open if

∀x ∈ S. ∃ε ∈ R>0. ∀y ∈ Rd. ‖x − y‖2 ≤ ε ⇒ y ∈ S .

The set S ⊆ Rd is closed if its complement Rd \ S is open. A set S ⊆ Rd is
bounded if

∃ε ∈ R>0. ∀x, y ∈ S. ‖x − y‖2 ≤ ε .

A set S ⊆ Rd is compact if it is closed and bounded.
The convex hull of a set V ⊆ Rd of d-dimensional points is defined as

cHull(V) = ∅ if V = ∅ and

cHull(V) =

{
n−1

∑
i=0

λivi

∣∣∣∣∣ n ∈ N>0 ∧
(

n−1∧
i=0

vi ∈ V

)
∧

(
n−1∧
i=0

λi ∈ R ∧ 0 ≤ λi ≤ 1

)
∧

n−1

∑
i=0

λi = 1

}

otherwise (see Figure 2.3 for an example).
Intuitively, each point s in a compact convex set S can be represented as the

convex combination of the generating points of S. We refer to this representation
of the set as the V-representation and call the generating points vertices (see
Definition 2.9).

Example 2.4: Convex Combination
y

x

p

q

r
sConsider the triangle defined by the three

points

p =

(
1
1

)
, q =

(
2
2

)
, and r =

(
3
1

)
.
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The point s = (2, 1.5)T can be represented as the convex combination(
2

1.5

)
= λ0

(
1
1

)
+ λ1

(
2
2

)
+ λ2

(
3
1

)
,

where λ0 = 1
4 , λ1 = 1

2 , and λ2 = 1
4 .

We use Equation (2.1) to define vertices/extreme points of a convex set.
Definition 2.9: Vertex

A point v of a convex set S is a vertex of S, often also called extreme
point, if for all pair of points x, y ∈ S and all 0 < λ < 1 we have that

v 6= λx + (1 − λ)y

holds. We write vertices(S) to denote the set of vertices of S.

More general, a vertex of a convex set S is a 0-dimensional face of S. A face
of a compact convex set S and a given c ∈ Rd is the set

face(S, c) = {x ∈ S | c0 ∈ R ∧ (∀y ∈ S. cy ≤ c0) ∧ cx = c0}

A face of S is a set F ⊆ Rd for which there exists a c ∈ Rd such that F =
face(S, c). The normal vectors of a face F of S is the set of all c ∈ Rd for which
F = face(S, c).

The faces of dimension 0, 1, d − 2, d − 1 of a compact convex set P ⊆ Rd

are called vertices, edges, ridges, and facets. Using Definition 2.9, a compact
set S can be represented by the convex hull of its vertices

S =cHull {v | v ∈ vertices(S)} .

Note that we need at least d+ 1 vertices to define a set S in Rd where dim S = d.
We refer to the set spanned by exactly d + 1 vertices as a simplex in Rd.

A property of unbounded convex sets in the Euclidean space is that they
contain a d-dimensional ray r = {t · x | t ∈ R≥0} for a fixed x ∈ Rd. Note that
{0} is the only finite ray. A set composed from rays is referred to as a cone.

Definition 2.10: Cone

A set C ⊆ Rd is a d-dimensional (convex) cone if C 6= ∅ and

∀x, y ∈ C. ∀λx, λy ∈ R≥0. λxx + λyy ∈ C .

The conical hull of a set V ⊆ Rd is cone(V) = {0} if V = ∅ and

cone(V) =

{
n−1

∑
i=0

λixi

∣∣∣∣∣ n ∈ N>0 ∧
(

n−1∧
i=0

xi ∈ V ∧ λi ∈ R≥0

)}

otherwise.
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y

x

P

Figure 2.4: Normal fan (light petrol) of a compact convex set P.

Note that {0} is the only finite convex cone. Note furthermore that conical
hulls are convex cones, thus {0} is also the only finite conical hull.

Any (potentially unbounded) closed convex set S thus can be represented
as the Minkowski sum (see Definition 3.7) of the convex hull of a set of points
V and a convex cone C:

S = cHull(V)⊕C .

Following [Zie95], a set F of d-dimensional cones is called a d-dimensional fan
if it has the following properties:

• Every non-empty face of a cone in F is also a cone in F .

• The intersection of any two cones in F is a face of both.

In this work, we only need to consider complete fans—a d-dimensional fan
F is complete if the union of all cones in F is Rd. In the context of linear
programming, we are interested in the normal fan.

Definition 2.11: Normal Fan

Let S ⊆ Rd be a compact convex set with faces F . The normal fan
N (S) of S is the set

N (S) =
{{

x ∈ Rd
∣∣∣ F ⊆ face(S, x)

} ∣∣∣ F ∈ F
}

Intuitively, the normal fan of S is the set of cones, each of which contain
the normal vectors of a face of S (see Figure 2.4). The solution to the linear
program maxx∈S c · x for given compact convex S ⊆ Rd and c ∈ Rd answers
the question “Which cone of N (S) does c lie in?” [Zie95]. We will come back to
the normal fan in combination with linear programming (LP) when computing
the support of a box (see Section 6.2).
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Support of a Set. For a given set S ⊆ Rd, its support ρS : Rd → (R ∪ {∞})
is a function which maps to each direction l ∈ Rd a scalar ρS(l) ∈ (R ∪ {∞})
such that

ρS(l) = sup
s∈S

〈s, l〉

holds. For a closed set ρS computes for each direction l ∈ Rd the smallest offset
for a half-space with normal vector l which fully contains S.

Polyhedra and Polytopes

Later, in Section 6.3 we will define and use polytopes for the representation of
state sets. Here we would like to point to a duality regarding the definition of a
more general type of sets called polyhedra.

On the one hand, a polyhedron P ⊆ Rd can be defined to consist of the
common solutions of finitely many linear constraints in d variables. On the
other hand, bounded polyhedra, which we call polytopes, can be defined as the
convex hull of finitely many points, and polyhedra as the Minkowski sum of
such a convex hull and a cone. Both definitions are equivalent in the sense that
they cover the same sets. Note that while this equivalency seems intuitive, it is
non-trivial to formally prove. For the interested reader, we refer to [Zie95].

These two views, the arithmetic view from Section 2.2 and the geometric
prespective from Section 2.3, will be reflected by two different datatypes for
polytopes, one based on the defining linear constraints and one based on
generating points of the convex hull.

2.4 Intervals and Interval Arithmetic

Intervals provide a convenient way to represent sets of values and are used in
many applications. In general, an interval I defines a bounded range of values,
i.e., the set of all values between the lower bound of I and its upper bound.
Intervals may be defined over various domains; in this work however, only
intervals over real or rational numbers are considered. For a comprehensive
introduction of intervals and interval arithmetic, we refer to [MKC09] and only
present selected parts of this work required for the comprehension of this thesis.
Our implementation of intervals for HyPro is based on an implementation of
interval arithmetic in the context of an ICP-based approach for satisfiability
modulo theories (SMT)-solving [Sch13] and is integrated into the Computer
Arithmetic Library (CArL)1.

Definition 2.12: Interval

An interval I is defined by a lower bound I ∈ R∪ {−∞}, an upper bound
I ∈ R ∪ {∞} and two relation symbols ∼l ,∼u∈ {<,≤} as the set

I =
{

x ∈ R
∣∣ I ∼l x ∧ x ∼u I

}
,

where we require that ∼l (∼u) is < if I = −∞ (I = ∞).

1github.com/smtrat/carl (checked July, 30th, 2019)
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We use I for the set of all real-valued intervals. Bound types are represented
by either square or round brackets, where a square bracket represents a weak
(≤) and a round bracket represents a strict (<) bound. Combinations of both
are allowed. Intervals with only strict bounds are called open, with only weak
bounds closed, otherwise half-open and half-closed. An interval is unbounded if
at least one of the bounds is infinite (±∞). The width of an interval I is defined
as |I − I|. Note that the width of an unbounded interval is ∞, the width of a
point-interval is zero, and the width of an empty interval is non-positive. In
this work, we will mostly deal with closed and bounded intervals, and restrict
the following descriptions to them.

Inclusion and intersection for non-empty intervals A, B can be computed
easily by using

A ⊆ B ⇔ B ≤ A ∧ A ≤ B

A ∩ B = [max(A, B), min(A, B)] .

Intervals are not closed under union, therefore we consider the convex hull of
their union as the smallest closure. Thus for non-empty intervals A, B we have:

cl(A ∪ B) = [min(A, B), max(A, B)]

Arithmetic over the reals can be extended to interval arithmetic as follows
(again, restricted to closed and bounded intervals).

Definition 2.13: Interval Arithmetic

For non-empty intervals A, B and scalars c ∈ R we define:

A + B = [A + B, A + B]
A − B = [A − B, A − B]
A · B = [min{A · B, A · B, A · B, A · B}, max{A · B, A · B, A · B, A · B}]

c · A =

{
[c · A, c · A] if c ∈ R≥0[
c · A, c · A

]
otherwise

For empty intervals, the operations are straightforward.

Note that multiplication can be implemented more efficiently as a case
distinction in which eight of nine cases only require to compute two prod-
ucts [MKC09]. For further arithmetic operations like interval division and
predicates like comparison, which are more involved and not required for the
general comprehension of this work, we refer to [MKC09; Rat96].
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Example 2.5: Interval Arithmetic

Addition:

[2, 3] + [1, 4] = [3, 7]

Subtraction:

[2, 3]− [1, 4] = [−2, 2]

Multiplication:

[2, 3] · [−2, 4] = [−6, 12]

Scalar multiplication:

[2, 3] · −1
4

=

[
−3
4

,
−2
4

]

Interval arithmetic is defined such that for all intervals A, B, elements
a ∈ A and b ∈ B and arithmetic operations � ∈ {+,−, ·,÷} it holds that
a � b ∈ A � B. This naturally implies inclusion isotonicity, i.e., A � B ⊆ C � D
for all intervals A ⊆ C and B ⊆ D.

Let e[α0, . . . , αn−1/β0, . . . , βn−1] denote the simultaneous syntactical replace-
ment of each αi by βi in e. We talk about interval-valued variables if we allow
variables x0, . . . , xd−1 to take any values from some interval domains I0, . . . , Id−1.
Assume a linear polynomial p over the variable set {x0, . . . , xd−1} in normal
form. It is easy to see that all possible evaluations of p under the given variable
intervals form the interval that we get when we replace in p each variable xi by
its interval Ii and compute the result using interval arithmetic:

{
p[x0, . . . , xd−1/v0, . . . , vd−1]

∣∣∣∣∣ d−1∧
i=0

vi ∈ Ii

}
= p[x0, . . . , xd−1/I0, . . . , Id−1] .

This property is not assured, e.g., if p is not in normal form or if p is not
linear, but for all arithmetic expressions p we can state the over-approximative
property:

{
p[x0, . . . , xd−1/v0, . . . , vd−1]

∣∣∣∣∣ d−1∧
i=0

vi ∈ Ii

}
⊆ p[x0, . . . , xd−1/I0, . . . , Id−1] .

Consequently, vectors and matrices can be extended to interval-valued
vectors and matrices. Operations such as matrix-matrix and matrix-vector
multiplication are defined analogous using interval-arithmetic operations; for
a real-valued matrix A ∈ Rd×d and a vector I = (I0, . . . , Id−1)

T of intervals
Bi ∈ I we define

A · I =

 a0_ · I
...

ad−1_ · I


where ar_ · I = Ar,0 · I0 + · · ·+Ar,d−1 · Id−1.
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We illustrate this with an example:

Example 2.6: Interval-valued matrices and vectors

Matrix-vector multiplication of a real-valued matrix A ∈ R2×2 and an
interval-valued vector x ∈ I2:(

2 3
1 4

)
·
(
[5, 6]
[0, 2]

)
=

(
2 · [5, 6] + 3 · [0, 2]
1 · [5, 6] + 4 · [0, 2]

)
=

(
[10, 18]
[5, 14]

)
.
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Formal Verification of Hybrid Systems

3.1 Hybrid Systems

In Computer Science we often consider discrete systems whose state changes
can be seen as instantaneous. Typical examples are program executions: though
they are physical and thus continuous processes, we can often model their
executions as a sequence of atomic, discrete steps. However, if we are interested
in the duration of the computations or the behavior of a dynamic environment
that is influenced by the computations, we need to extend our discrete view to
include also continuously changing quantities.

Systems from mechanical or electrical engineering, or physical systems in
general exhibit a continuous behavior in which quantities evolve continuously
over time (referred to as dynamic systems). Over the years, engineers have
developed various approaches to analyzing dynamic systems with regard to
their needs. Techniques and theoretical approaches towards stability analysis of
controllers have been developed and are still of interest.

Hybrid systems in computer science are systems with mixed discrete-contin-
uous behavior which unify both notions in one system—the discrete (switching)
behavior of a digital system in combination with the continuous nature of a
dynamical system. Apart from physical processes that are inherently hybrid,
e.g., the bouncing of a ball from the ground, hybrid systems also comprise
systems in which a digital controller interacts with a continuous environment.
Examples include automotive or aviation systems, e.g., the model of a cruise
control or a vehicle platoon, systems from electrical engineering, e.g., models of
DC-DC converters, systems from biology, e.g., the model of a pacemaker for the
human heart. Additionally, academia has come up with many artificial systems,
e.g., a simplified model of a reactor cooling system [NOS+92], a model of a
point mass moving on a plane with varying dynamics or a model of moving
heaters in a fixed room-setup [FI04]. Combining both a model for a plant as
well as a model for a digital controller into one model results in more expressive
models and allows for the design and analysis of closed-loop models.

In general, hybrid systems are considered a subclass of cyber-physical systems
(CPSs) as they incorporate both digital as well as physical components. As CPS
are often safety-critical, much effort has been put into the safety-verification
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of hybrid systems by means of reachability analysis. The reachability problem
for a hybrid system H tries to determine whether a specific set of states Pbad is
reachable in H via an execution starting from a set of initial states Init (see
Section 3.3).

3.2 Hybrid Automata

As previously mentioned, the behavior of hybrid systems exhibits both discrete
and continuous components. For digitally controlled physical systems, the
discrete part of the state space is usually determined by the states/modes of the
controller. While the controller is in a given state, the values of the observed
physical quantities such as temperature, pressure, etc. evolve continuously over
time according to the dynamics defined for that state.

To be able to make statements about specific properties of a given system,
formal methods require an abstraction of the given system in the form of a model
that holds all relevant information required but abstracts away unnecessary
details. Among other representations, e.g., hybrid Petri nets [DA01], hybrid
automata [Hen96] have become a popular modeling paradigm for mixed discrete-
continuous systems.

Hybrid automata can be seen as extensions of discrete transition systems,
which consist of a set of locations Loc (control modes), a set of variables Var,
and a set of guarded discrete transitions Edge (jumps) between locations. The
current location ` together with the current variable valuation ν specifies the
current state of the system. Discrete state changes can happen if the enabling
condition of a jump (guard) is satisfied by the current state, i.e., if the current
variable assignment in ` satisfies the guard predicate. Upon taking a jump,
apart from changing the location, the variable valuation can also be updated to
new values according to the reset for this jump.

Hybrid automata extend these models with continuous dynamic behavior.
While the control stays in a location `, time transitions (flows) let the values of
the variables evolve continuously according to the dynamics in `, which can for
instance be specified by ordinary differential equations (ODEs). As long as the
control stays in a particular mode, the variable valuations ν need to satisfy the
invariant of that mode. Simultaneously enabled time passage and jumps, or
several simultaneously enabled jumps might introduce non-determinism. Urgent
jumps might reduce this non-determinism by forcing a discrete step if any
urgent jump is enabled.

For a set X of real-valued variables, let in the following PredX denote
the set of all predicates over X, which are quantifier-free arithmetic formulas
with variables from X. We do not fix the functions in the arithmetic theory,
such that the general definition allows besides addition and multiplication e.g.,
trigonometric functions in predicates. Later we will consider models where
all predicates are conjunctions of linear real arithmetic constraints, comparing
linear expressions to constants. We will also use a specific fragment Predass

X1,X2
for

assignment predicates, which are predicates that are conjunctions of constraints
of the form x ∼ e, where x ∈ X2, e is an expression over variables from X1, and
∼∈ {<,≤,=,≥,>}. For an assignment predicate ϕ =

∧
i=0,...,n−1(xi∼ici) ∈
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Predass
X1,X2

and some x ∈ X2 we define ϕ[x] =
∧

i=0,...n−1,xi=x(x∼ici) to be the
conjunction of all constraints in ϕ with left-hand-side x.

We write ν |= ϕ to denote that the valuation ν ∈ R|X| for the variables X is
a model of the predicate ϕ ∈ PredX, and for a valuation set N we write N |= ϕ
if ν |= ϕ for all ν ∈ N. We write ϕ1 ≡ ϕ2 to denote semantical equivalence (i.e.,
ν |= ϕ1 ⇔ ν |= ϕ2 for all valuations ν) between predicates.

Definition 3.1: Hybrid Automata: Syntax

A hybrid automaton is a tuple

H = (Loc, Var, Lab, Flow, Inv, Edge, Init)

consisting of the following components:

• A finite set Loc of locations or control modes.

• A finite ordered set Var = {x0, . . . , xd−1} of real-valued vari-
ables; sometimes we use the vector notation x = (x0, . . . , xd−1).
The number d is called the dimension of H. We denote the set
{ẋ0, . . . , ẋd−1} of dotted variables by ˙Var (which represent first
derivatives during continuous change) and the set {x′0, . . . , x′d−1}
of primed variables as Var′ (which represent values directly after a
discrete change).

• A finite set Lab of synchronization labels containing the stutter
label τ ∈ Lab.

• Flow : Loc → Predass
Var, ˙Var specifies the flow or dynamics for each

location.

• Inv : Loc → PredVar assigns an invariant predicate to each location.

• Edge ⊆ Loc × Lab × PredVar × Predass
Var,Var′ × Loc is a finite set of

discrete transitions or jumps. For a jump (`, a, g, r, `′) ∈ Edge, `
is its source location, a is its synchronization label, `′ is its target
location, g specifies the jump’s guard, and r its reset, where primed
variables represent the state directly after the discrete jump.

• Init : Loc → PredVar assigns an initial predicate to each location.

We sometimes use subscript notation to associate components with a concrete
hybrid automaton, i.e., InitH refers to the set of initial states of the hybrid
automaton H. We sometimes skip the label component of a hybrid automaton
and its edges if it is not relevant in the given context.

The behavior of a hybrid automaton is defined by an operational semantics as
follows (see Definition 3.2 for the formal definition). A state σ ∈ Σ = (Loc ×Rd)
of a given hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init) is a tuple
σ = (`, ν) of a location ` ∈ Loc and a variable valuation ν ∈ Rd. We collect
(symbolically represented) sets of valuations N which agree on the same location
in state sets (`, N) = {(`, ν) | ν ∈ N}, which we also call a symbolic state. In
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t

x

Init

Figure 3.1: A sketch of a flowpipe. The shaded area (petrol) contains all
reachable states starting from the set Init by letting time pass. The shape of
the flowpipe is determined by the initial set and the flow specification.

the following, we overload operations f over valuations sets to be applicable
also to state sets (`, N) as defined by f ((`, N)) = (`, f (N)). In fact, we use the
terms state set and set of valuations synonymously throughout the rest of this
work.

Initial states (`, ν) satisfy both the initial and the invariant conditions of
location `. States change according to discrete and continuous/time transitions
as follows. A time transition (flow) models the passage of time t: while control
stays in a location `, the values of the state variables evolve continuously
according to a function that is a solution to a system of ODEs given by the
flow condition of the current location. Furthermore, the invariant predicate
Inv(`) of the location must not be violated by any variable valuation during
time evolution.

Given a set of initial states, the states which are reachable via time transitions
according to the flow in the given location form a flowpipe (see Figure 3.1).
When flows are described by linear predicates, i.e., linear differential equations,
we refer to this as linear dynamics; otherwise we use the term non-linear
dynamics.

Discrete transitions (jumps) model a change of mode, given that the guard
of a jump is satisfied in the predecessor state. The successor state of a discrete
jump, which is the result of applying the reset function on the predecessor state,
must satisfy the invariant of the target location.

Definition 3.2: Hybrid Automata: Operational Semantics

The one-step semantics of a hybrid automaton

H = (Loc, Var, Lab, Flow, Inv, Edge, Init)
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is specified by the following rules:

` ∈ Loc ν, ν′ ∈ Rd f : [0, τ] → Rd

∂ f /∂t = ḟ : (0, τ) → Rd f (0) = ν f (τ) = ν′

∀ε ∈ (0, τ). f (ε), ḟ (ε) |= Flow(`)
∀ε ∈ [0, τ]. f (ε) |= Inv(`)

(`, ν)
τ−→ (`, ν′)

Rule flow

e = (`, g, r, `′) ∈ Edge `, `′ ∈ Loc ν, ν′ ∈ Rd

ν |= g ν, ν′ |= r ν′ |= Inv(`′)

(`, ν)
e−→ (`′, ν′)

Rule jump

Executions (runs, paths) π of a hybrid automaton are ordered sequences
of states that are connected by time and discrete steps as specified by the
operational semantics rules Ruleflow and Rulejump.

Definition 3.3: Path

A path of H is a (finite or infinite) sequence of states of H that are
connected through alternating time and discrete steps:

π = σ0
τ0−→ σ1

e1−→ σ2
τ2−→ σ3

e3−→ σ4
τ4−→ · · ·

with σi = (`i, νi) ∈ LocH × Rd being states of H, τi ∈ R≥0, ei ∈ EdgeH,
and ν0 |= InvH(`0).
We call a path initial if additionally ν0 |= InitH(`0). A state σ is
reachable in H if there is an initial path in H leading to it.

We assume finite paths σ0
τ0−→ · · · τ2k−→ σ2k+1 to end with a time step (possibly

of duration 0). The length |π| ∈ N ∪ {∞} of a path π is the number of jumps
in it. The duration dur(π) ∈ R ∪ {∞} of a path π is the time which passes on
π, i.e.,

dur(π) =
∞

∑
i=0

τ2i .

A state σ is visited by a (possibly infinite) path π = σ0
τ0−→ σ1

e1−→ σ2 · · · of
length k ∈ N ∪ {∞} if there exist i ∈ N≤k and τ ∈ R with 0 ≤ τ ≤ τ2i such
that σ2i

τ−→ σ and σ
τ2i−τ−−→ σ2i+1; we write Reachπ for the set of all states visited

by π.
In contrast to the continuous notion of visiting a state, we use the pointwise

notion for prefix, i.e., a finite path π1 = σ0
τ0−→ · · · τ2k−→ σ2k+1 is a prefix of all

other paths π2 = σ0
τ0−→ · · · τ2k−→ σ2k+1 · · · .

For simplicity, unless stated otherwise, in the following we mean by path a
finite initial path.

An infinite path π in a hybrid system is called time divergent, if dur(π) = ∞
and time convergent otherwise.
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We extend the notion of paths π over states (`, ν) to symbolic paths Π over
symbolic states (`, N):

Π = (`0, N0)
[τl,0,τu,0 ]−−−−→ (`1, N1)

e1−→ (`2, N2)
[τl,2,τu,2 ]−−−−→ (`3, N3)

e3−→ · · ·

Such a symbolic path Π includes all paths

π = (`0, ν0)
τ0−→ (`1, ν1)

e1−→ (`2, ν2)
τ2−→ (`3, ν3)

e3−→ · · ·

for which νi ∈ Ni and τ2i ∈ [τl,2i, τu,2i] for all i; we write π ∈ Π to denote this
inclusion.

For symbolic paths Π we define the set of visited states as ReachΠ =
∪π∈ΠReachπ.

A symbolic path is contained in another symbolic path, written Π1 ⊆ Π2,
if for all π ∈ Π1 it holds that π ∈ Π2. A symbolic path Π1 is a prefix of a
symbolic path Π2 if Π2 starts with Π1, i.e., either they are equal or Π2 has the
form Π1

e−→ σ
τ−→ · · · .

The longest common prefix of two symbolic paths Π1, Π2 is denoted as
pref (Π, Π′), which is ε if no common prefix exists.

A counterexample for a d-dimensional hybrid automaton H and an unsafe
state set Pbad ⊆ Rd is an initial path π∗ of H that visits at least one state from
Pbad, i.e.,

Reachπ∗ ∩ Pbad 6= ∅ .

We can also model different system components separately and use shared
variable concurrency and jump label synchronization to build their parallel
composition.

Intuitively, hybrid automata which are composed in parallel execute concur-
rently: time evolves simultaneously in all components, whereas for jumps the
components may synchronize with each other or execute independently. For the
latter case, in order to express (and possibly restrict) discrete changes caused
by the environment, components that do not synchronize on a jump execute a
local jump with the stutter label τ.

Definition 3.4: Parallel Composition

Consider two hybrid automata

H1 = (Loc1, Var1, Lab1, Flow1, Inv1, Edge1, Init1)

and
H2 = (Loc2, Var2, Lab2, Flow2, Inv2, Edge2, Init2)

with Var1 = Var2. The product automaton

H1||H2 = (Loc, Var, Lab, Flow, Inv, Edge, Init)

is the hybrid automaton with

• Loc = Loc1 × Loc2,

• Var = Var1(= Var2),
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• Lab = Lab1 ∪ Lab2,

• Flow(`1, `2) = Flow1(`1) ∧ Flow2(`2) for all (`1, `2) ∈ Loc,

• Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2) for all (`1, `2) ∈ Loc,

• Init(`1, `2) = Init1(`1) ∧ Init2(`2) for all (`1, `2) ∈ Loc,

• Edge is the smallest set that contains for each e1 =
(`1, a1, g1, r1, `′1) ∈ Edge1, e2 = (`2, a2, g2, r2, `′2) ∈ Edge2 the edge
(`1, `2), a, g1 ∧ g2, r1 ∧ r2, (`′1, `′2) if:

– either a = a1 = a2,
– or a1 6∈ Lab2 and a2 = τ,
– or a2 6∈ Lab1 and a1 = τ.

Note that in practice the construction of the product automaton is tedious,
as the resulting automaton size is typically large.

Classes of Hybrid Automata

There are several subclasses of hybrid automata that are interesting for some
theoretical reason or practical aspect. These subclasses are typically defined
as syntactical fragments, restricting the type of predicates allowed to specify
flows, invariants, guards, and resets. In the following, we will shortly present
the subclasses relevant for this work and indicate how reachability can be
computed for those subclasses. A detailed presentation of the approaches for
the reachability analysis of each subclass can be found in Section 8.1.

Timed Automata. Timed automata (TA) are a relatively simple subclass
of hybrid automata in which each variable x ∈ Var is a clock measuring
the time with derivative ẋ = 1 [AD94]. In this fragment, predicates PredVar
are conjunctions of constraints x ∼ c with c ∈ N and ∼ ∈ {<,≤,=,≥,>}
comparing clocks to constants, i.e., invariants and guards encode rectangular
sets. Discrete jumps in TA either leave the value of a clock unchanged or reset
it to zero. The syntactic restrictions on TA render their reachability problem
decidable and allow for sound and complete verification algorithms for safety
properties [ACD90]. We can create a finite abstract model of a TA, the so-called
region transition systems, to which we can apply standard (explicit or symbolic)
model checking approaches to answer the TA reachability problem. Zone-based
abstractions improve this approach using difference bound matrices (DBMs) as
a dedicated datatype for states sets (see [BK08] and Section 8.1).

TA are often used to model and verify digital real-time systems or processes
in which timing is critical but no further dynamic behavior is present. Examples
include network communication protocols [ACH+95] or production chains.
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Example 3.1: Timed Automaton

Consider the following timed automaton T :

`0
ẋ = 1

x ≤ 2
x = 0

a:
x ≥ 1
x′ = 0

The automaton has a single clock x, which is reset periodically in
time intervals of length [1, 2]. While this automaton itself is not very
exciting, a parallel composition of T with another, more expressive
hybrid automaton might be more interesting. Using the synchronization
label a on the discrete jump, the automaton T can be seen as a non-
deterministic event generator embedded into a larger context.

Rectangular Automata. A more expressive subclass is rectangular automata
(RA) in which not only invariants and guards but also all assertion predicates
encode rectangular sets, i.e., each predicate is a conjunction of constraints
comparing variables to constants. Instead of a ≤ x ∧ x ≤ b we also write
x ∈ [a, b]. Using this notation, flows are composed from constraints ẋ ∈ [a, b],
and variables can be reset on jumps using x′ ∈ [a, b] with x ∈ Var and a, b ∈ N.

Example 3.2: Rectangular Automaton

The following RA is similar to the timed automaton model above, but
its clock is subject to drift and cannot be precisely reset.

`0
ẋ ∈ [0.9, 1.1]

x ≤ 2
x = 0

a: x ≥ 1
x’ ∈[0,0.1]

In general, the reachability problem for RA is undecidable. However, reach-
ability via paths having a bounded number of jumps can be still decided, e.g.,
using the same method as described for LHA I below. Furthermore, the un-
bounded reachability problem for RA is decidable under the condition of being
initialized, meaning that if two locations specify different flows for a variable,
then each jump between them resets that variable to a constant value from an
interval.

Definition 3.5: Initializedness

A hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init)) is called
initialized if the following holds:

∀(`, g, r, `′) ∈ Edge. ∀x ∈ Var. Flow(`)[x] 6≡ Flow(`′)[x] ⇒
∃a, b ∈ N. r[x] ≡ (x′ ∈ [a, b])
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Intuitively, initializedness requires that whenever the dynamics of a variable
changes when taking a discrete jump, the variable has to occur non-trivially in
the reset function.

Linear Hybrid Automata I. Further increasing the expressivity, we arrive at
the class of linear hybrid automata I (LHA I), whose flows are defined by
rectangular sets as for RA, but whose other predicates may also contain linear
expressions over the model variables. That means, invariants and guards may
contain constraints of the form Ax ∼ b and resets may use affine mappings
x′ = Ax + b, where A ∈ Rd×d and b ∈ Rd. Similarly to RA, the jump-bounded
reachability problem for LHA I is decidable, but the general reachability problem
is not.

Example 3.3: Linear Hybrid Automaton I

Besides a skewed clock x0, the LHA I below has also a precise clock x1,
which is used to periodically set the skewed clock to the precise time.
Another precise clock x2 is used to assure that this synchronization
happens regularly at least one and at most two time units after the last
reset.

`0
ẋ0 ∈ [0.9, 1.1]

ẋ1 = 1
ẋ2 = 1

x2 ≤ 2

x0 = 0
x1 = 0
x2 = 0

a: x2 ≥ 1
x′0 = x1
x′2 = 0

One possible approach to compute reachability for LHA I is based on logical
characterizations of state sets and formula transformations along with quantifier
elimination to compute successors [Hen96]. A detailed description for LHA
I-reachability analysis is outlined in Section 8.1.

Linear Hybrid Automata II. The main focus of this work is on this model
class. Linear hybrid automata II (LHA II) extends the expressivity of LHA I by
allowing linear expressions also in the flows, i.e., allowing to specify dynamics by
systems of linear ODEs. For this class, even the problem of bounded reachability
is undecidable.

Example 3.4: Linear Hybrid Automaton II

In contrast to all the above model classes, LHA II allow variable dynamics
to be coupled, e.g., the dynamics of a variable might depend on the value
of another variable, as in the following example LHA II automaton:
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`0
ẋ0 = 3x1 + 4
ẋ1 = x0 − x1

x + y ≤ 10

x0 = 0
x1 ∈ [1, 2]

a: x0 + x1 = 10
x′0 = 0.1 · x1

x′1 = 0

Many mechanical and physical systems such as moving point masses
can be described by LHA II automata—for more examples see Chap-
ter 4. Furthermore, higher-order linear differential equations can be
described as a system of first-order linear differential equations by adding
intermediate variables.

Table 3.1 sums up the decidability results of the presented subclasses of
hybrid automata along with their specific characterization.

3.3 Reachability Analysis for Hybrid Systems

At the heart of hybrid systems safety verification is the computation of the
set of reachable states. Basic safety properties specify a set of bad states Pbad,
whose reachability is safety-critical. Reachability analysis as a method for safety
verification of hybrid systems tries to determine, whether the set of bad states
Pbad is reachable in a given hybrid automaton H from any of its initial states.
Formally, the method tries to answer whether ReachH ∩ Pbad = ∅, where ReachH
denotes the set of reachable states in H.

Current reachability analysis tools for hybrid systems use different ap-
proaches to verify safety via reachability analysis. Some approaches are based on
theorem proving and combine deductive, real algebraic, and computer-algebraic
proving technologies. On the one hand, these techniques are compelling and can
handle (at least in theory) a wide range of models by using deduction to provide
mathematical proof for the safety of a given system. On the other hand, these
approaches are semi-interactive and need experienced users to guide the proof.
Some tools provide predefined strategies and allow to create user-defined ones
which can be of great help to increase the level of automation and reduce the
need for interaction to a minimal level. The most prominent tool implementing
this approach is KeYmaera [Pla08; PQ08].

Other approaches use logical characterizations of the reachability problem
and employ bounded model checking and satisfiability modulo theories (SMT)
solving technologies to check for safety [BHM+09; Gao12]. The idea is to
formulate the one-step reachability relation as a mixed integer-real arithmetic
formula. In case the solution of the ordinary differential equation is known (for
instance if the derivatives are constant), fast SMT-solvers can be employed.
Otherwise, the logic and the corresponding decision procedures need to be ex-
tended with a theory for differential equations. Theoretically, even if incomplete,
these techniques might succeed in proving safety as well as unsafety. However,
running times are hard to predict and incomplete methods might return incon-
clusive answers, even for decidable problems. Tools using this approach are for
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Table 3.1: Decidability results for subclasses of hybrid automata (TA= timed
automata, IRA = initialized rectangular automata, RA = rectangular automata,
LHA I = hybrid automata with constant derivatives, LHA II = hybrid automata
with linear ODEs, HA = general hybrid automata).

subcl. derivatives conditions bnd. unbnd.
reach. reach.

TA ẋ = 1 x ∼ c  

IRA ẋ ∈ [c1, c2]
x ∈ [c1, c2]

jump resets x
when ẋ changes

 

RA ẋ ∈ [c1, c2] x ∈ [c1, c2]  

LHA I ẋ = c x ∼ glinear  

LHA II ẋ = flinear x ∼ glinear  

HA ẋ = f x ∼ g  

instance DReach [Gao12; GKC13], HSolver [RS05], hydlogic [IUH11] or
ISatODE [EFH08; Egg14].

Another category is that of iterative reachability analysis methods. Forward
reachability analysis starts with the set of initial states and iteratively computes
successor states until either the set of bad states is reached, or a fixed-point has
been found. In contrast to that, backward analysis starts from the set of bad
states and iteratively computes predecessor states until either the set of initial
states is reached, or a fixed-point has been found. If we use exact computations,
then reaching the bad/initial state is a proof of unsafety, whereas a fixed-point
that does not contain any bad/initial state proves safety.

Since the reachability problem for general hybrid automata is undecid-
able [HKP+98], also methods to over-approximate ReachH by Reach′H ⊇ ReachH
have been developed. Over-approximative computations can be used to im-
plement semi-decision procedures that can still prove safety. However, if over-
approximative successor/predecessor computations detect a bad/initial state,
then no conclusive answer can be given.

To ensure termination, the problem is furthermore typically restricted to
reachability via paths with bounded time duration and a limited number of
jumps. Instead of putting an upper bound on the total time duration of paths,
in this work, we will use a time horizon T as an upper bound on uninterrupted
time evolution without jumps. Furthermore, we will use a jump depth J to limit
the number of discrete transitions along execution paths.

A general forward reachability analysis algorithm is depicted in Algorithm 1.
In this work, we focus on a certain kind of iterative forward reachability

computation methods that are called flowpipe-construction-based approaches.
To compute time successors, tools implementing this approach divide a bounded
time horizon into smaller segments of size δ, which we refer to as time step
size. The flowpipe, i.e., the set of trajectories of a given system is over-
approximated for each segment by a single state set. The state sets are usually
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Algorithm 1: General forward reachability analysis algorithm.

Input: Set of initial states I
Output: Set of reachable states R

R := I
Rnew := R
while Rnew 6= ∅ do

Rnew :=computeReach(Rnew)\R
R := R ∪ Rnew

over-approximated by geometric or symbolic state set representations, for in-
stance boxes (hyper-rectangles), convex polytopes, zonotopes, ellipsoids, support
functions, or Taylor models (see Figure 3.2). Starting from a set of initial states,
the time- and jump-successor states are computed by applying certain oper-
ations on those state set representations. The ratio between computational
effort and precision can be influenced using various analysis parameters such
as the time step size or the type of state set representation, which usually are
provided by the user. The advantage of these techniques lies in the high level
of automation and in the possibility to increase efficiency or to improve the
precision according to the needs of the user. On the other hand, due to the
over-approximative representation of state sets, only safety can be proven with
this technique—proving unsafety would require under-approximative computa-
tions. Tools in this category are for instance CoRA [Alt15], Flow* [CÁS13],
SpaceEx [FLD+11], Xspeed [GRB+18], ariadne [CBG+12], and our HyPro
tool on which we will report in detail later.

3.4 Flowpipe Construction

In the following we explain flowpipe-construction-based reachability analysis in
more detail. The method is formalized in Algorithm 2 at the end of this section.
For further reading we refer to e.g., [Le 09].

In this work, we focus on linear hybrid systems specified by linear hybrid
automata (see Section 3.2). Locally, each control mode of an autonomous LHA
II specifies a dynamic system by a system of linear differential equations

ẋ = Ax (3.1)

over the variables x = (x0, . . . , xd−1)
T of the given hybrid automaton H, where

A ∈ Rd×d is a coefficient matrix. Note that we can transform systems of the
form ẋ = Ax + b to the form presented above by adding an artificial dimension
with zero flow for the constant vector b.

Non-autonomous systems extend the dynamics by a time-dependent function
u(t). Usually, it is assumed that u(t) is from a bounded domain U, which is
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guard

reset

I

Figure 3.2: Sketch of flowpipe-construction-based reachability analysis for hybrid
systems.

used to represent external inputs influencing the system evolution and results
in dynamics of the form

ẋ = A · x + B · u

where A and B are matrices of appropriate dimensions and u ∈ U. In this work,
we only consider autonomous systems, for details on flowpipe-construction-based
reachability analysis methods for non-autonomous systems we refer to [Le 09]
in which a state-of-the-art reachability analysis method for non-autonomous
systems is presented and to [FKL13] for a refined approach.

Solutions to Equation (3.1) are of the form

x(t) = etA︸︷︷︸
Φ

·x(0) (3.2)

i.e., x(t) is the state that is reached at time point t when starting from the initial
state x(0) at time point t = 0 and following the flow specified by the matrix A.
Consequently, Φ depends on the current location ` for which time successors
need to be computed and also on the chosen t. The solution (Equation (3.2))
represents a linear transformation of the initial variable valuation x0 = x(0)
and can directly be extended to sets of variable valuations N such that

Nt = Φ · N0 .

While Equation (3.2) allows to compute the set of reachable states Nt at a
specific point in time t, it does not yet allow to reason about the set of reachable
states over a time interval. To overcome this, methods which approximate the
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set of reachable states for a time interval [0, δ] have been developed [Dan00;
Gir04; Gir05; Le 09; LG10].

The general idea of those methods is to over-approximate the error α between
an approximation Ω of the set of reachable states for the time interval [0, δ]
and the actual set of reachable states

Reach[0,δ] =
{
(`, ν)

∣∣∣ ν = etA · x0, t ∈ [0, δ], x0 ∈ N0

}
.

One of the earliest approaches [Gir05] provides an over-approximation of α
by approximating the Hausdorff-distance (see Definition 3.6) between Ω′ =
cHull(N0 ∩ Nδ) and the actual reachable set of states.

Definition 3.6: Hausdorff Distance

The Hausdorff distance between two sets A, B ⊆ Rd is defined as

dA,B = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

for some distance metric d().

For an initial state x ∈ N0 and the state r = eδA · x that is reached from x
at time point δ, we consider their connecting line segment{

sx(t) = x +
t
δ
(r − x)

∣∣∣∣ t ∈ [0, δ]

}
.

The union of all such line segments for all x ∈ N0 defines the convex hull of N0
and Nδ. The error between sx(t) and the actual trajectory ζx(t) = etAx then
can be quantified as

‖ζx(t)− sx(t)‖ =

∥∥∥∥etAx − x − t
δ
(eδA − I)x

∥∥∥∥
In [Gir05], this error is approximated using Taylor’s theorem (the Taylor-
expansion is cut off after degree two and the remainder is over-approximated)
such that ∥∥∥∥etAx − x − t

δ
(eδA − I)x

∥∥∥∥ ≤ (eδ‖A‖ − 1 − δ ‖A‖) ‖x‖︸ ︷︷ ︸
α

.

With this result it is possible to safely over-approximate the set of reachable
states Reach[0,δ] for the time interval [0, δ] by bloating the convex hull with a
ball Bα of radius α

Ω = (N0 ∪ Nδ)⊕Bα,

where the operator ⊕ denotes the Minkowski-sum (see Definition 3.7). This
approach results in a uniform bloating (see Figure 3.3a)—in later works [Le 09],
a non-uniform bloating method has been developed (see Figure 3.3b).
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x0

eδAx0

a) Uniform bloating.

x0

eδAx0

b) Non-uniform bloating.

Figure 3.3: Construction of the first segment of a flowpipe applying different
bloating techniques (sketch).

Definition 3.7: Minkowski Sum

The Minkowski sum A ⊕ B of two sets A, B ⊆ Rd is defined as the set

{a + b | a ∈ A ∧ b ∈ B}

and represents the set-theoretic equivalent to addition.

Once the first flowpipe segment Ω0 safely over-approximating the time
interval [0, δ] is computed, we can compute further segments Ωi using the same
time step size δ, thereby discretizing the time horizon T for the analysis. The
recurrence relation to obtain a sequence of segments Ωi for one location ` of an
autonomous linear hybrid system is given as

Ωi+1 = Φ · Ωi .

The repeated application of Φ results in a sequence of segments Ωi where
each segment by construction safely over-approximates a time interval [iδ, (i +
1)δ] For non-autonomous hybrid systems a second bloating step needs to be
performed during the analysis which is required for each computed set Ωi.
For the interested reader, we refer to [Le 09] which contains a more detailed
description of how to efficiently handle this second bloating step.

With this method at hand, we are able to compute flowpipe segments
Ωi, i = 0, . . . , k − 1 for a given dynamics A up to a certain time horizon T using
a fixed time step size δ = T

k , starting from a defined set of initial states (`, N0).
If we consider the semantic rules for letting time pass (Ruleflow) for hybrid
automata, we notice that until now we have not considered the invariant of
the current location. Time can pass in a location only as long as the location’s
invariant is satisfied. Since Ωi = (`, Ni) is an over-approximation of the actual
set of reachable states for its assigned time interval [iδ, (i + 1)δ], we can stop the
computation of further time successors in the form of further flowpipe segments
Ωi+1, Ωi+2, . . . if Ni ∩ Inv(`) = ∅.

To compute discrete successors, for each outgoing transition e = (`, g, r, `′) ∈
Edge of the current location ` in H and for each flowpipe segment Ωi = (`, Ni)
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we need to verify whether the jump can be taken from any state in the segment,
i.e., whether

N′
i = Ni ∩ g 6= ∅

holds. Each flowpipe segment for which this property holds is said to enable
the transition. All non-empty segments Ω′

i = (`, N′
i) with N′

i 6= ∅ are passed
to the reset function r to discretely update variable valuations and obtain

Ω′′
i = (`, N′′

i ) = (`, r(N′
i)) .

For linear hybrid systems, this is usually realized by an affine transformation
such that N′′

i = A · (N′
i) + b where A is used to linearly transform N′

i and b is
a translation vector, both of appropriate dimension.

As a last step, we check whether any valuations from N′′
i fulfills the invariant

of the target location by computing N′′′
i = N′′

i ∩ Inv(`′) and checking whether
N′′′

i = ∅. We continue with computing the flowpipe in `′ for all non-empty
Ω′′′

i = (`′, N′′′).

Algorithm 2: Pseudo-code algorithm for bounded flowpipe-construc-
tion-based reachability analysis.

Input: Hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init)
Output: Over-approximation of reachable states in H
Q := Init
R := ∅
while Q 6= ∅ do

Ω := computeFirstSegment(getElement(Q))
while not timeBoundReached() do

Ω := Ω ∩ Inv(`)
R := R ∪ Ω
if not jumpBoundReached() then

for (`, g, r, `′) ∈ Edge do
addElement(Q, r(Ω ∩ g) ∩ Inv(`′))

Ω := letTimePass(Ω)

return R

During the analysis, we employ several operations such as intersection, union,
Minkowski sum, or test for emptiness on state sets, but more explicitly on
sets of variable valuations. We will address this issue in a later part of this
dissertation in which we present our collection of state set representations under
a unified interface which is suitable to implement flowpipe-construction-based
reachability analysis methods (see Chapter 6). Note that the presented approach
is designed for the reachability analysis of linear hybrid automata II (LHA II).
As indicated before, dedicated methods exist for some of the subclasses of LHA
II, which will be considered in a later part of this work (see Chapter 8) and
explained in detail there.
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Analysis Parameters

The verification of hybrid systems brings several challenges for the user. The
first challenge lies in the creation of a formal model of the hybrid system at
the right level of abstraction, which reflects the behavior of the system under
analysis. Once we have a formal model of a hybrid system, we can employ
flowpipe-construction-based reachability analysis methods to analyze the safety
properties of said system for all bounded executions starting from the set of
initial states.

The application of flowpipe-construction-based approaches for reachability
analysis as presented before poses another challenge related to the choice
of the analysis parameters such as the time step size δ. These parameters
affect the introduced over-approximation errors and the computational effort
and thus significantly influence the verification success. Choosing suitable
analysis parameters is a tedious task that requires detailed knowledge about
the implemented approaches as well as the model of the system which is to
be analyzed [SÁC+15]. In this section, we provide an overview of potential
parameters of interest and illustrate their influence on the analysis in terms
of precision and running time. Throughout the rest of this work, we refer
to valuations for the set Par of relevant analysis parameters which may be
used by a reachability analysis method as a parameter configuration. We use
FP((`, N), Par) to denote the set of symbolic states that results from computing
the flowpipe for the symbolic state (`, N) and all possible jump successors using
the parameter configuration Par.

Time Step Size. As already pointed out, the time step size δ influences
the introduced over-approximation errors, which are added when comput-
ing the first segment of the flowpipe (see Section 3.4). First approaches for
flowpipe-construction-based reachability analysis [Dan00; Gir04] additionally
suffered from introducing additional errors caused by wrapping effects. Later
improvements [Le 09] reduced this error for non-autonomous hybrid systems by
decoupling the bloating introduced by external inputs from the computation
of the autonomous parts of the system. The authors of [FKL13] presented a
method to dynamically adapt the time step size during computation to be able
to meet a predefined error bound that was provided by the user a priori.

Discrete Jump-successor Computation. Even though it might not be obvious,
the way discrete jump successors are computed has a crucial influence on
the running times of a reachability analysis algorithm. Usually, more than
one flowpipe segment satisfies a guard condition of a discrete transition e =
(`, g, r, `′) ∈ Edge which can be processed in several ways.

Naturally, all flowpipe segments Ωi that enable a jump can be handled
individually and a new flowpipe in the target location can be computed rooted in
Ω′′′

i (see Figure 3.4a). The drawback of this approach is the strong branching of
the search tree (see Section 6.9) as for each set satisfying a guard constraint a new
discrete jump successor is created. Furthermore, the number of discrete jump
successors for one transition is not known a priori and might even change when
using different time step sizes, as the number of segments over-approximating
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g

a) No aggregation.

g

b) Aggregation.

g

c) Clustering.

Figure 3.4: Different approaches in the discrete jump successor computation of
state sets satisfying the guard g predicate (green).

a specified time interval changes. Nonetheless, this approach should not be
discarded per se, as in contrast to other approaches (see below) it does not
introduce additional over-approximation errors, which can have a considerable
influence, depending on how state sets are represented.

Aggregation instead provides an easy-to-use approach in which all segments
or parts of segments Ωi satisfying a certain guard condition g are unified to one
set (see Figure 3.4b). This approach allows for maximal control regarding the
branching of the induced search tree but also introduces additional over-approx-
imation errors, which depend on the used state set representation. Furthermore,
aggregation can only be performed when all sets satisfying g are known.

A middle ground between the two approaches is clustering (see Figure 3.4c).
In this approach, an upper bound c of discrete successors is provided a priori.
Jump successors of flowpipe segments are distributed among c groups and the
segments in each group are combined to one set using set-union. A discrete
successor in the search tree is added for each group. This method is less
restrictive than aggregation but still allows to control the branching factor of
the search tree.

State Set Representation. The choice of a state set representation is crucial to
the outcome of the analysis of a given system. We differentiate between symbolic
and geometric state set representations to describe a set of states of a given
hybrid system. Geometric representations used for reachability analysis include
boxes [RS05; MKC09], convex polytopes [Zie95; Fre05], ellipsoids [KV00; KV07],
oriented rectangular hulls [SK03], orthogonal polyhedra [Dan00], template
polyhedra [SDI08], and zonotopes [Gir05] among others. Taylor models [MB09;
Che15] and support functions [LG10] have been used to represent state sets
symbolically. Each state set representation comes with its advantages and
disadvantages making a universal statement difficult.

Zeno Test. Zeno behavior describes unrealistic behavior in which a time con-
vergent path is executed. In general, we differentiate between two types of
Zeno behavior—chattering Zeno behavior and classical Zeno behavior. Chat-
tering Zeno behavior occurs whenever a system may execute infinitely many
discrete transitions in finite or even zero time. A simple example exhibiting
chattering Zeno behavior is presented in Figure 3.5, where the only transition
is a constantly enabled self-loop. Classical Zeno behavior, as a super-class
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l0
ẋ = 1

Figure 3.5: Zeno behavior: the discrete transition is always enabled and may
be taken infinitely often without letting time pass.

of chattering Zeno, includes all execution paths of a system which are time
convergent. An infinite path π in a hybrid automaton is called time convergent
if the sum of the execution times of the time transitions is finite, and time
divergent otherwise. An execution of the automaton presented in Figure 3.5
where the time step sizes are converging, e.g., a sequence of time transitions
σ0

1−→ σ1
1/2−→ σ2

1/4−→ · · · exhibits Zeno behavior in the classical sense. Note that
paths containing sequences of time transitions as the previously mentioned one
are excluded in the semantics of paths defined in this thesis as we enforce alter-
nation of discrete jumps and time transitions. While this semantics excludes
classical Zeno behavior, it does not allow for infinite paths, which instead is
possible when not enforcing alternation of time transitions and discrete jumps.

In reachability analysis tools time convergent paths such as the previously
mentioned one are not considered for analysis, i.e., consecutive time transitions
are collapsed to a single time transition. Nonetheless, the detection of chattering
Zeno behavior is more challenging.

Fixed-point Test. Tests whether a fixed-point has been reached have several
consequences on the performance of a reachability analysis algorithm. On the
one hand, detecting a fixed-point is always beneficial in the sense that redundant
computations can be avoided. On the other hand, checking the criteria for a
fixed-point is time-consuming as we have to compute set-containment to be
able to detect a fixed-point during the computation.
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Hybrid Systems
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4

Examples of Hybrid Systems

Recent advances in algorithms have turned reachability analysis into a powerful
method for the safety verification of continuous and hybrid systems. Techniques
are available that can compute approximations of the reachable states for
systems with linear dynamics and more than 200 variables [LG10; FLD+11;
BD17a; BFF+18], and for systems with complex non-linear dynamics [Gao12;
CÁS13; BCD13].

As in general the reachability problem is undecidable for hybrid systems
[HKP+98] and even the one-step successors can only be computed approximately,
experimental results are essential for validating algorithms, detecting their
shortcomings, and identifying where further research is necessary.

Experiments in reachability require not only algorithms but also models of
systems and specifications that are to be verified. Such benchmarks are not
easy to come by, in particular when investigating high-dimensional systems.
Research papers typically include a small number of proprietary benchmarks or
modified versions of benchmarks published in other papers. A notable exception
is a small collection of benchmarks in [FI04], and the benchmark collection of
the ARCH workshop series [AF14], which is tailored to industrial applications.
Using just a small number of benchmarks for test and evaluation entails the
risk to tune tools to be efficient for specific application types only.

The results presented in the next two chapters are based on [CSB+15;
SÁC+15] and may contain excerpts that are not explicitly cited in the text again.
In the following, we present our collection of models for hybrid systems [CSB+15]
that is also publicly available1. It consists of system models along with property
specifications and detailed descriptions, references to prior work, input files,
and exemplary results for the tools Flow* [CÁS13] and SpaceEx [FLD+11].
Additionally, we present benchmarks taken from other collections [ACH+95;
FI04; AF14] which we will use for our experiments throughout this work. Apart
from making the benchmarks readily available in a unified form, our benchmark
collection makes the following contributions:

1https://ths.rwth-aachen.de/research/projects/hypro/
benchmarks-of-continuous-and-hybrid-systems/ (checked July, 30th, 2019)
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Classification: The benchmarks originate from a variety of domains and serve
a variety of purposes, e.g., testing scalability with respect to the number of
variables or the number of locations. Identifying a benchmark that suits a
particular tool and helps to evaluate an individual property is non-trivial. The
collection is organized by the model type (continuous/hybrid, linear/non-linear),
which roughly corresponds to the kind of tool to which it is applicable. Within
each class, benchmarks are listed by complexity (scalability, number of variables,
locations, transitions).
Specification: To ensure comparability of results between different tools, the
model and property specifications need to be unambiguous and formal. We
provide such formal specifications for all included benchmarks. Note that not
all benchmarks easily lend themselves to specifications in the typical form of
a given set of “bad states”. For example, some benchmarks for testing the
accuracy of approximations give quantitative results. Finding a unified form
for specifying systems as well as their properties is one of the long-term goals
of this collection.
Identifying challenges: Though state-of-the-art hybrid systems reachability
analysis tools are impressively successful and can solve a wide range of interesting
problems in industry [AD14; ABC+17; BD17a; ABC+18; IAC+18], they
are still rarely applied outside the research community. Driving research
directions towards the needs of other scientific areas and application domains
would increase the usage of formal approaches for the verification of hybrid
systems in those areas as well. Therefore, one of our long-term goals is to
identify benchmarks suitable for this purpose, even if current tools do not
exhibit sufficient functionalities yet. Current challenges, some of which can also
observed in the presented benchmarks are also presented and discussed in detail
in Chapter 5.

4.1 The Benchmark Suite

Benchmarks are an essential asset during the process of developing a tool. The
advancement of reachability analysis methods for the verification of hybrid
systems is not an exception. Additionally to existing benchmark collections,
for instance, the collection of the ARCH workshop [AF14], we have collected
and categorized a further set of benchmarks. While the collection of ARCH
contains a comprehensive collection of benchmark submissions, most of the
challenging instances are not solved yet (6 out of 33 benchmarks are reported
to be solved2).

Our benchmark suite currently covers 29 benchmarks. The included bench-
marks are selected to cover different levels of expressiveness in their components.

• We provide both pure continuous benchmarks as well as hybrid models.

• The continuous dynamics is described by either linear or non-linear
ordinary differential equations.

2State: July, 30th 2019
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• Further classification is provided with respect to the number of variables
and, for hybrid behavior, the number of locations and the number of
discrete transitions. One of the benchmarks is scalable, allowing the
generation of high-dimensional models.

• The hybrid models specify transition guards varying in their form from
half-spaces or hyperplanes over linear conditions up to non-linear ones.

• Reset conditions can be absent or described by linear terms.

• Invariants are boxes in some benchmarks and general polyhedra in others.

• Reachability analysis is hindered by Zeno behavior, which is present in
some of the models.

Our collection of linear benchmarks includes well-known smaller academic
models, such as the bouncing ball or the two tank system, as well as lesser-known
benchmarks, such as the vehicle platoon [BDK12]. For the sake of completeness
and testing purposes, we have decided to include small but frequently referenced
benchmarks additionally.

Our benchmark collection also features a selection of non-linear benchmarks
with both purely continuous and hybrid systems. Currently, there are 13
continuous and five non-linear hybrid models available ranging from chaotic
systems such as the Van der Pol oscillator and the famous Lorentz system over
systems from mechanics such as a spring pendulum to various systems taken
from biology such as the spiking neurons [Izh07] or the glycemic control [Fis91].
The later two benchmarks along with the non-holonomic integrator [HM99] or
the non-linear transmission line circuits [RW03] were extracted from external
sources, thus enhancing the collection by relevant, non-artificial benchmarks
which are now open to the formal methods community. Such non-artificial
models are important for driving tool development towards being capable of
solving a wide range of real-world problems.

My colleague Xin Chen contributed all of those models during his disser-
tation [Che15]. As this thesis is concerned with the analysis of linear hybrid
systems, we will not present non-linear benchmarks in detail, but refer the
interested reader to [CSB+15] for further details.

The web page presentation lists all benchmarks along with their property
specifications, classified into linear continuous, non-linear continuous, linear
hybrid, and non-linear hybrid models. For each model, we also list measures
regarding their size. We explain each of the benchmarks in our collection on a
separate web page, reference originating literature, provide a model description
for downloading in SpaceEx and Flow* input format, and show example plots
of the reachable state set generated by those tools.

In the following, we present a selected subset of our benchmark collection
which is relevant for this thesis in detail along with further benchmarks not
(yet) part of the collection that will be used for experimental evaluation later.
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4.2 Linear Benchmarks

Our collection of linear hybrid systems (see Section 3.2) currently holds 11
different benchmarks, with one instance being purely continuous and the other
ones being hybrid. In this section, we will present a selected subset of those
benchmarks in detail; note that the remainder of the collection is available
online. We have selected benchmarks, we think are interesting for tool developers
because they are simple in structure, but exhibit particular properties which
already might pose challenges when it comes to their verification. The presented
systems here are given without safety specifications, but we will give indications
on possible sets of bad states. Additionally, we present benchmarks from
further collections, which will be used for the evaluation of our methods in
later parts of this thesis. To aid identification, we provide a unique label for
each benchmark written in true type fonts (e.g., Bld) which will be used during
experimental evaluation to reference the respective benchmark. Properties
of the used benchmarks such as the state space dimension or the number of
locations are collected in Table 4.1.

Bouncing Ball

The bouncing ball (Ball) is probably one of the most well-known benchmarks
often used as an entry-level example of a hybrid automaton [ACH+95]. Con-
sisting of only one location and one looping transition (see Figure 4.1), its
structure is relatively simple. As the name suggests, this system models a ball
that is dropped from an initial altitude and bounces off the ground. The system
models the ball’s vertical position only, although there exist non-linear versions
of this benchmark, where the ball bounces off wave-shaped surfaces and not
only its vertical but also its horizontal position is modeled. In the simplified
version, the ball’s position x changes according to its velocity whose constant
change is subject to earth’s gravity. The ball bounces whenever it reaches the
ground, i.e., when x = 0 holds. The ball itself is not rigid, i.e., the velocity v
is not only inverted when bouncing but also dampened by a factor 0 < c < 1
which varies from instance to instance (in the experiments we use c = 0.75).

Even though this benchmark seems to be simple, it already exhibits inter-
esting properties. First of all, the guard condition is a hyperplane. Guard
intersections with even lower-dimensional sets might be a problem, depending
on the numerical properties and the state set representation used. Additionally,
the system in itself exhibits Zeno behavior, as c is a factor such that v and
x theoretically never reach zero at the same time—the ball bounces infinitely
often in finite time.

Throughout this thesis, we will frequently use the bouncing ball for evaluation
and apply the same bounds on the local time horizon T = 3 and maximal jump
depth of three.

Thermostat

Also considered an entry-level benchmark, the thermostat system [ACH+95]
(Thmo) has been used as a motivating example in many publications and lectures.
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`
ẋ = v

v̇ = −9.81
x ≥ 0

x ∈ [10, 10.2]
v = 0

x = 0 ∧ v < 0
v′ = −c · v

Figure 4.1: The hybrid automaton for the bouncing ball system. For experiments
we chose c = 0.75.

Consisting of two control modes which reflect a digital controller’s states, this
system represents a simple cyber-physical system (CPS) and thus is often picked
as an introductory example. The system contains a room heating device that
can either be turned on or off. The room temperature, which changes according
to the influence of the room heating and a constant behavior accounting for
the room’s volume, is modeled in this system. Based on the specified room
temperature bounds (invariants in the modes) the controller switches the heating
on or off.

Safety specifications may be the room temperature being within certain
bounds, although the system’s long-term behavior will allow any room tempera-
ture within the bounds specified as invariants in the control modes. Thus, only
extended variants in which the controller only monitors the system at specific
points in time are of interest—we will use an extended version in the later parts
of this thesis (see Chapter 8). A simplified version of this extended thermostat
system can be found in Figure 4.2.

For our experiments we use a local time horizon T = 10 and bound the
global execution time to 10 s using an additional clock.

Two Tank System & Leaking Tank System

Similar to the bouncing ball, the two tank system (2Tnk), as well as the
leaking tank (LTnk) are commonly used benchmarks for hybrid systems safety
verification [ACH+95]. Both systems model the filling level of liquid-filled tanks.
In both systems the tanks are usually leaking, i.e., the amount of liquid in
the tanks is reduced with a constant outflow. Additionally, some instances are
equipped with constant inflow. To avoid complete drainage of the tanks, it
is possible to refill the tanks in both systems. Furthermore, sometimes valves
allow to control the outflow of the tanks.

The two tank benchmark, as the name suggests, models two tanks where
only the first one can be refilled. The two tanks are connected via a pipe with
an attached valve, i.e., the outflow of the first tank equals the inflow of the
second one. Additionally to the constant outflow of the second tank, an electric
valve can be opened to increase the outflow of the second tank. The classical
version of this benchmark, which is used in Section 6.4 uses two variables and
four modes connected by seven discrete jumps (label 2Tnk’).

In contrast to this, the leaking tank benchmark models only one tank. The
variant considered in this work models a system in which the tank has a constant
inflow of liquid. A constant outflow, which is smaller than the inflow models
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Figure 4.2: The hybrid automaton for the PLC-extended thermostat. In the
image we have omitted the variables high, low, HPLC, nLoc, and H, which have a
flow of zero and represent the internal state for the PLC-controller. Furthermore
we omit the additional clock which is used to bound the total execution time of
the system.

58



4.2. Linear Benchmarks

onIn

x = 10

onU on onCy

offInoffU off offCy

`0
ẋ = 2

x ≤ 20
ctrlInv

`1
ẋ = 0

x ≥ 20
ctrlInv

`2
ẋ = −1.5

ctrlInv

Figure 4.3: Simplified automaton for the leaking tank benchmark equipped
with an explicit controller. We have omitted state variables of the controller
and simplified its internal structure. Arbitrary switching in the plant (locations
`0, `1, `2) is prevented by controller variables (ctrlInv).

the leakage of the tank. Additionally, a valve can be opened to increase the
outflow and prevent the tank from overflowing.

Possible safety specifications usually argue about the filling level of the
modeled tanks, which should be kept within certain bounds (the tanks should
neither overflow nor run empty). In the later part of this work, we will consider
extended versions [SNÁ17], where a controller has been added, which only
checks the filling levels periodically (see Chapter 8). A simplified automaton of
the extended versions with explicit controllers for the leaking tank benchmark
can be found in Figure 4.3, however, the automaton of the two tanks benchmark
with a controller is too large to be depicted here (34 locations, 296 discrete
jumps). Model files for both extended systems can be found on our webpage.

In our experiments, we use a local time horizon of 20 s and bound the global
execution time to 20 s via an additional clock.

Rod Reactor

The rod reactor system (Rods) is a simplified model of the reactor core of a
nuclear power plant depicted in Figure 4.4 [ACH+95]. Such reactors feature
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norod
ẋ = K · x − 50

ċ1 = 1
ċ2 = 1

x ≤ 550

x ∈ [510, 520]
c1 = 20
c2 = 20

rod 1
ẋ = K · x − 56

ċ1 = 1
ċ2 = 1

x ≥ 510

rod 2
ẋ = K · x − 60

ċ1 = 1
ċ2 = 1

x ≥ 510

shutdown
ẋ = 0
ċ1 = 0
ċ2 = 0

x = 550
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x = 510

c′1 = 0

x = 550
c2 ≥ 20

x = 510

c′2 = 0

x = 550
c1 ≤ 19.999
c2 ≤ 19.999

Figure 4.4: The hybrid automaton for the rod reactor system. For experiments
we chose K = 0.1.

fuel rods that heat the surrounding water to power turbines, and cooling rods
made from a material that inhibits the radioactive reaction, which are inserted
in between the fuel rods to be able to regulate the temperature. The system
models the reactor temperature depending on the state of two different cooling
rods that can be extended or retracted. The cooling rods are made from different
materials, i.e., they have a different influence on the temperature dynamics
when used. The controller can decide which cooling rod to use whenever the
temperature exceeds a fixed boundary, but cannot use the same rod for a fixed
amount of time after it has been used.

This benchmark is interesting for tool developers, as it is among the smallest
benchmarks (with respect to the number of locations and the state space dimen-
sion) to introduce non-deterministic switching between different control modes,
i.e., there exist several paths with a different discrete fragment. Furthermore,
depending on the initial set, the time duration in which a guard is enabled after
the first time elapse is relatively long. This makes the benchmark interesting as
it raises the demand for approaches that manage to cluster state sets satisfying
the guard of a discrete jump.

The time horizon of this benchmark is set to T = 20 and a maximum of five
jumps is analyzed.

Navigation

The navigation benchmarks [FI04] (Nav) are a family of 30 instances of different
sizes. The systems model a point-mass moving on a two-dimensional plane.
The x- and y-position of the mass, as well as the respective accelerations ẋ and
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B

a) Schematic structure of a navigation
benchmark instance.

b) Schematic structure of the five-
dimensional switching system (Sw5).

Figure 4.5: Schematic overview of the navigation- and the switching-system.

ẏ are modeled as system variables—all instances have a state space dimension
of four. The plane itself is subdivided into cells, each of which is associated with
a specified acceleration in x- and y-direction. Neighboring cells are connected
via discrete jumps with the cell-boundary representing both the guard and the
invariant condition, which forces control to switch mode for trajectories leaving
the cell. Instances vary from planes subdivided into 3 × 3 cells up to instances
with 25 × 25 cells. A schematic illustration is given in Figure 4.5a.

As the boundary between two neighboring cells is part of both cells, this
allows for infinite switching between the cells as the cell-boundaries also represent
the guard sets for the discrete jumps between the cells. Consequently, the model
exhibits Zeno-behavior. Also, the initial sets specified for the original instances
are usually all states contained in a particular cell. This renders the benchmark
very difficult, as all outgoing discrete jumps are enabled directly and the search
tree structure displays extensive branching during the analysis for later control
modes as well.

All instances are equipped with two special cells: one cell representing the
set of bad states and another cell representing a set of so-called “good states”.
While the semantics of the former is clear, the latter can be modeled as a
location with no flow where control may stay infinitely long. The original idea
of a set of good states is to not only validate the absence of unwanted behavior
through avoiding bad states but also to be able to ensure that all trajectories
end up in a particular good, absorbing location, i.e., to validate that a specific
property eventually holds.

For our experiments, we use a local time horizon T = 3 and a maximal jump
depth of eight jumps.

Switching System

The artificial switching system (Sw5) consists of five control modes `i, i =
0, . . . , 4, arranged in a linear setup, i.e., transitions `i

e−→ `i+1 are featured
in the model. The system models five variables, and the flow specification
for each variable xi depends on all system variables. The dynamics in each
control mode are created randomly using Matlab’s rss() function, thus the
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a) Automaton for process i in Fish.

free

p0

p1

p2

b) Automaton modeling the critical sec-
tion access in Fish. All edges are label-
synchronized with the processes.

Figure 4.6: Components of Fisher’s mutual exclusion protocol bench-
mark (Fish).The resulting system is a parallel composition of the automata of
several processes and the critical section automaton

system is entirely artificial. The system is stabilized with an LQR controller to
guarantee convergence to a stable region in the last mode. However, the system
shows little robustness such that even small over-approximation errors induce
diverging behavior—this can, for instance, be observed when using boxes as
a state set representation for this benchmark. A schematic illustration of the
system’s hybrid automaton is given in Figure 4.5b.

For the safety verification, we define a set of bad states as a half-space in
one variable in the last location. Note that the number of jumps is naturally
bounded by the structure of the system such that at most four jumps can be
observed. A local time horizon of T = 1 is used during the analysis.

Fisher’s protocol

This benchmark (Fish) taken from [ACH+95] describes a system in which
processes attempt to access a shared resource mutually exclusively. The ac-
cess to this resource is managed by a variant of Fisher’s mutual exclusion
protocol [Lam87]. Each process is modeled by four modes (see Figure 4.6a),
an additional component models the access to the critical section via label
synchronization with the process-automata (see Figure 4.6b). We consider
three processes, but theoretically, this benchmark is scalable in the number of
processes. To make the model more appealing, internal clocks for the processes
are modeled with drifts, which means they operate at different rates. The
resulting model is a parallel composition of a fixed number of processes. While
variants of this benchmark involve different numbers of processes, in this work
we consider an instance with three processes similar to the one used in [BRS17;
BRS18].
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comm
ẋ = A · x

ṫ = 1

t ≤ 5

comm_brk
ẋ = A′ · x

ṫ = 1
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t = 5

t′ = 0

t = 5

t′ = 0

Figure 4.7: Structure of the hybrid automaton for the vehicle platoon bench-
mark.

The system should guarantee mutual exclusion at all times, i.e., the set of
bad states is defined by any state in which more than one process accesses the
critical section at the same time.

For our experiments, we use a maximal jump depth of eight jumps and a
local time horizon T = 12.

Vehicle Platoon

Also included in the provided benchmark collection, the vehicle platoon system
(Pltn) was originally proposed in [BKG+09]. In this benchmark, a platoon of
several vehicles following a human-controlled leader vehicle is modeled. The
successive vehicles attempt to keep a certain distance between each other based
on the information of the surrounding vehicles obtained by radio communication.
In the original version of the benchmark, communication failure is modeled,
which can happen at arbitrary points in time for an arbitrary time period.
Several variants of this benchmark exist that differ in the number of vehicles
(three, five, and ten vehicles) and several models of communication failure. In
this thesis, we consider a platoon of three vehicles where communication breaks
down deterministically as used in [ABC+17; ABC+18]. Furthermore, as we
do not consider non-autonomous hybrid systems in this thesis, external inputs
that are present in the original model have been removed. A simplified version
of the corresponding hybrid automaton is depicted in Figure 4.7.

The used benchmark has only two modes but requires nine variables to
model the dynamics, which makes it more challenging than low-dimensional
models. A range of several safety specifications exist, which vary the minimal
distance threshold between the vehicles.

In our experiments, all executions are bounded to a length of 20 s, realized
by an additional clock. To analyze all behavior within this time horizon, we
use a maximal jump depth of 1000 jumps and a local time horizon T = 20.

Building

The building system (Bld) presented in [TNJ16] is a large-scale dynamical
system. This particular system models the static model of the Los Angeles
University hospital building with eight floors as a beam model and focuses on
the forces acting on the building and its resulting movements.
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Table 4.1: Properties of the benchmarks used for the evaluation of the methods
and approaches presented in this thesis.

model dimension # locations # jumps
Ball 2 1 1
Thmo 8 8 18
LTnk 12 11 34
2Tnk 22 34 296
Rods 3 4 5
Nav09 4 16 48
Nav11 4 25 80
Sw5 5 5 4
Fish 4 152 324
Pltn 9 2 2
Bld 48 1 0

With 48 state variables, it can be considered a medium-sized benchmark
suited to test the scalability of an approach towards higher-dimensional state
spaces. Variants with fewer variables exist, i.e., the number of modeled floors is
reduced. This system only has one mode, i.e., it is a purely continuous system,
i.e., no handling of discrete jumps is required. However, the high dimensionality
makes it difficult to visualize graphically, therefore we refer to the webpage for
the SpaceEx model specification3.

Safety criteria put bounds on certain variables—we use the same safety
specifications as used in [ABC+17; ABC+18]. Similarly, we use the same time
horizon T = 40 in our experiments.

3https://cps-vo.org/node/34059 (checked July, 30th, 2019)
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5

Challenges in Hybrid Systems Safety Verification

Having the theoretical foundations at hand, we can focus on practical limitations
when it comes to the applicability and implementation of a general hybrid
systems safety verification method. In this chapter, we address some of the
challenges one has to face during the creation of a hybrid systems safety
verification method and its implementation in a tool. While some of the
presented challenges are more of a general nature, we want to focus on approaches
implementing flowpipe-construction-based reachability analysis for linear hybrid
systems and potential pitfalls relevant to this method. Most parts of this chapter
are based on results from [SÁC+15] and may contain direct excerpts without
explicit quotation.

5.1 State Set Representation

Approaches based on flowpipe-construction-based reachability analysis raise
the demand for an efficient state set representation during computation (see
Section 3.4). As mentioned earlier in this work, the choice of the state set repre-
sentation is always a trade-off between computational complexity and precision.
In current approaches mostly geometric but also few symbolic representations
have been used. The most commonly used ones are boxes [MKC09], convex
polyhedra [Zie95; CÁF11], ellipsoids [KV00], oriented rectangular hulls [SK03],
orthogonal polyhedra [BMP99; Dan00], support functions [LG10], Taylor
models [MB09; CÁS12], template polyhedra [SDI08; BFG+17], and zono-
topes [Gir05]. Boxes and polytopes are frequently used; also support functions
and zonotopes are prominent for models with linear ordinary differential equa-
tions (ODEs), whereas Taylor models can also be used for non-linear ODEs.
However, none of the representations offer an optimal solution, as they have
individual strengths and weaknesses, mainly in the representation size and in the
efficiency of certain operations needed during the reachability analysis for linear
hybrid systems. Although several tools use conversions between representations
for certain computations, context-sensitive approaches have been still missing.
In this thesis, we address this issue in Chapter 8.

As an example, an adaptive choice of the state set representation based on
the system’s dynamics in different locations can be a promising approach. Also,
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automated dynamic conversion to reach an optimal trade-off between precision
and efficiency during computation using an iterative refinement technique is
not yet supported—approaches to guide the search [BDF+13; BDF+16] which
refine a single representation exist but to our knowledge switching between
representations is not considered in current approaches. Also here we propose
some improvements related to a CEGAR-method (see Section 5.10)

Furthermore, there is rare support for non-convex representations. Last but
not least, most representations are over-approximative, and therefore applicable
for safety verification. However, for proving unsafety, novel under-approximative
computations would be of help.

In Chapter 6, we will introduce our C++ library for state set representations
where we implement the most prominent state set representations currently
used in flowpipe-construction-based reachability analysis along with details on
the implementation of required operations. Furthermore, we will address some
of those ideas for future development in Chapters 7 and 8.

5.2 Precision

For systems where the distance between the reachable and the unsafe states
is small, the used precision can be crucial for the outcome of the reachability
analysis. If the outcome is inconclusive (the over-approximation intersects with
the unsafe state set), the only solution has been to restart the analysis from
scratch with new parameters which lead to an error reduction (e.g., reduction
of the time-step size in the flowpipe construction, see Section 3.4). However, as
higher precision comes with longer running times, the new parameters must be
chosen carefully by the user. An automatic adaptation of the analysis parameters
would be not only more user-friendly but could also be applied dynamically to
refine the search along only those paths which led to an intersection with the
unsafe state set, instead of executing the complete analysis with a high-precision
configuration. We will address this topic in a later part of this dissertation (see
Chapter 7) in the context of a counterexample-guided abstraction refinement
(CEGAR)-based refinement approach.

5.3 Fixed-point Recognition

Recognizing fixed-points in the reachability analysis, i.e., when the whole
reachable state set of a hybrid system is already checked for safety, enables the
solution of the unbounded reachability problem. However, to detect fixed-points,
a considerable number of state sets need to be stored, and successor sets must be
tested for inclusion. As this comes at high costs, current tools use only heuristic
checks for fixed-points, i.e., checking whether discrete jump successor states are
already contained in the computed approximation of the set of reachable states.
A more systematic check would require highly efficient storage of state sets
and fast operations on them—a possible approach could use memory-efficient
under-approximations in a representation with fast inclusion and intersection
computations (e.g., boxes).
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5.4 Large Uncertainties

Uncertainties can be included in the models when e.g., some coefficients of the
dynamics cannot be fixed precisely, or in the presence of time-varying external
inputs like natural forces or users. Though systems with bounded uncertainties
can be verified, models with large uncertainties are one more challenge in the
verification of hybrid systems. Each uncertainty introduces a bloating factor
that is carried onward and even aggregated during the computation of the
reachable set. Although a few approaches were proposed to overcome these
limitations (see, e.g., [RMC09]), most tools have problems to find conclusive
answers for models with large uncertainties.

5.5 Zeno Behavior

Whenever it is possible to execute an infinite number of jumps in a finite amount
of time, we observe Zeno behavior. Naturally, no real system exhibits Zeno
behavior. However, it is hard to avoid Zeno paths in modeling, and sometimes
in large systems it is even hard to detect. In [AS05] the authors distinguish
between chattering Zeno (infinite jump sequences with zero dwell time) and
genuine Zeno (infinite jump sequences with nonzero dwell time in-between
converging to zero) behavior.

Examples for chattering Zeno behaviors can be found in switching systems,
where the state space is divided into grids, each grid having its own dynamics,
modeled by an own location (see for instance the navigation benchmark example
in Section 4.2). Switching between different cells of a grid does not modify
the continuous state and is always possible whenever the current state lies at
the boundary between two cells. Therefore, infinite back-and-forth switching
on boundaries can happen in such models, causing a problem for reachability
analysis if the reach-set approximation is not idempotent: even if no new states
are reached, successor states in a sequence of jumps may grow and even diverge
as the approximation errors accumulate. If the reach-set computation is exact
(such as in HyTech or Phaver), chattering Zeno has no particularly adverse
effect (it may increase the number of image computations necessary to reach a
fixed-point).

Genuine Zeno can be problematic for any computation that follows the
execution of the system, because any finite number of successor computations
may not be able to cover all reachable states. Using over-approximations may
resolve the problem if they cover the limit points of the sequence. This can be
achieved automatically with widening operators [CH78]; here, the difficulty lies
in keeping the over-approximation reasonably small [MFK09].

5.6 Non-convex Invariants

Most tools require that the invariants of the locations are convex sets, mainly
for representation reasons. However, similarly to programs that might have
disjunctions in loop conditions, non-convex invariants also appear in hybrid
system applications. Though one can apply model transformation to eliminate
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Figure 5.1: The split of a location with a non-convex invariant (left) into two
locations with convex invariants (right) might introduce Zeno behavior.

non-convex invariants by splitting the non-convex set into convex subsets and
introducing a new location for each convex subset, with this approach the
models are extended with Zeno behavior, hardening their analysis (see Figure
Figure 5.1). An efficient analysis without such model transformations could be
enabled, for example, by non-convex state set representation techniques such as
orthogonal polyhedra [Dan00].

5.7 Urgent Transitions

Urgency enforces a certain behavior as soon as a condition is satisfied—in
this context, urgent jumps need to be taken as soon as the guard condition is
satisfied. On the other hand, an urgent location ` enforces that no time passes
while control stays in `.

Invariants are one possibility in modeling to force the control to move from
one mode to another (see Example 5.1) to realize an urgent location. Another
possibility are urgent transitions, which prohibit time elapse as soon as they are
enabled. Urgent transitions have the advantage that they make the reason for
the mode change more visible (observable), and therefore they are sometimes
preferred instead of the usage of invariants1. However, most tools do not support
urgent transitions, though their analysis would even reduce the computation
effort: both the expensive computations of intersections with invariants as
well as the computation of flowpipes from those state sets which are included
in the guard of an outgoing urgent transition become superfluous. On the
other hand, as shown in [MF14] urgent transitions may complicate the analysis:
in case the guard of an urgent transition is only enabled by a subset of the
system’s trajectories, analysis methods need to support (over-approximative)
set difference computations (see Figure 5.2) to account for the shadow-like
cutoff of trajectories satisfying the guard of the urgent transition.

1We are not aware of any trivial conversion between models using invariants and models
using urgent transitions, mostly because an invariant can force the control to leave a location
at its boundary only if further time elapse would violate it.
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Init
g

Figure 5.2: An urgent transition with a guard g which is only enabled by parts
of the system’s trajectories (petrol) starting from Init [MF14].

Example 5.1: Urgent Locations

We can enforce control to leave a certain location ` after a specific
amount of time, even zero time using an additional clock t.

. . .

`
ẋ = A
ṫ = 1

Inv`
t = 0

. . .
t′ = 0

5.8 Compositionality

Large systems are usually modeled compositionally as a set of modules running
concurrently. Most available tools build the parallel composition of the modules
to get a non-compositional model, which can be subsequently analyzed. However,
the composition results in high-dimensional systems, which pose challenges for
the analysis (see Definition 3.4). For instance, in [SLÁ+18] we have worked
on the analysis of robot swarms in which every robot is modeled by a hybrid
automaton and the swarm is represented as the parallel-composition of all robots
being part of it. Our results from this work indicate that direct, static parallel
composition results in intractably large systems requiring lots of memory and a
significant amount of time to compute the resulting product automaton.

Compositional analysis techniques would be advantageous, but there is
no straightforward way to extend the available techniques to support compo-
sitionality. The tool SpaceEx allows to model systems in a compositional,
hierarchical way via hybrid I/O automata [DF13]. As assume-guarantee meth-
ods proved to be useful in program verification, it might also be a promising
option in hybrid systems reachability analysis. However, when we aim for
push-button approaches, suitable assumption-commitment specifications should
be derived automatically. An approach towards this direction has been proposed
in [BDF+13] in which an abstraction of a system is obtained by location merging
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in the tool SpaceEx. Another possibility could be to analyze the concurrent
modules simultaneously and communicate between the concurrent analyses
on synchronization-relevant computations using, e.g., partial order reduction
techniques.

5.9 Counterexamples

Although a few tools, for example KeYmaera [PQ08], can provide counterex-
amples for unsafe models, most tools do not have this functionality. However,
counterexamples are extremely important and provide valuable information for
system developers to correct unsafe designs. Using simulation-based approaches,
in [NÁC+13] the authors present ideas on heuristics for using simulation to
obtain counterexample traces for hybrid systems.

Furthermore, counterexamples play an essential role in CEGAR where they
are used for further refinement and recovery (see below).

5.10 CEGAR

Frequently used in various other research areas, counterexample-guided abstrac-
tion refinement (CEGAR) is not yet established in the field of hybrid systems.
Using a relaxed version of the problem can introduce a significant speed-up
in verification. In case the verification fails, a counterexample path is used to
refine relevant components of the model. First attempts similar to CEGAR
have been used to guide the analysis [BFG+12; BDF+16], or to refine the repre-
sentation of state sets in case of hybrid systems with constant derivatives (LHA
I) using template polyhedra as a state set representation [BFG+17]. In this
dissertation, we are presenting a more general approach towards CEGAR-based
refinement during the analysis which combines some of the features published
in earlier works but also extends and generalizes the method for hybrid systems
reachability analysis (see Chapter 7).

5.11 Parallelization

Regarding the efficiency of the reachability analysis of hybrid systems, the
current main focus lies on improving the efficiency of sequential algorithms.
Approaches for parallelization are rare and not yet well understood. However, the
exploitation of multi-core hardware systems could help to improve the scalability
and the applicability of available technologies to large-scale systems. The tool
Xspeed [GRB+18] is to our knowledge the first to implement a parallelized
reachability analysis based on flowpipe construction. In their approach, the
authors parallelize in two ways: (i) different flowpipes are analyzed in parallel
and (ii) via hierarchical time discretization a method for parallelization of
the computation of a single flowpipe is presented. Our previously mentioned
CEGAR-approach supports the parallelization of the first kind (see Section 7.5).
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5.12 Modeling Language Expressiveness

To make hybrid automata as a modeling language more attractive and usable
for a broader range of applications, further extensions regarding expressiveness
should be considered. For example, the more general class of cyber-physical sys-
tems (CPSs) includes distributed hybrid systems where additionally to discrete
and dynamic aspects, communication also plays an important role. Spatio-
temporal hybrid automata [SL13] are a possible extension in this direction,
supporting the modeling of communication and other spatial aspects.

Another relevant aspect is randomized behavior, which can affect either the
dynamics of a system via stochastic differential equations [BL06] or the discrete
behavior via probabilistic transitions [Spr00]. The later can involve probabilistic
properties regarding the choice between enabled transitions. A pioneer tool in
this area has been Prohver [ZSR+10], which implements analysis algorithms
using a transformation of probabilistic hybrid automata to hybrid automata
without probabilistic components. Though a few further approaches have been
proposed since then, this thread of research is still in its infancy.
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6

A Library for State Set Representations

“Im großen Garten der Geometrie kann sich jeder nach
seinem Geschmack einen Strauß pflücken.”

— David Hilbert

In the previous sections, the general algorithm for flowpipe-construction-
based reachability analysis has been introduced in which sets of geometric
shapes over-approximate state sets. The presented approach relies on a fixed
set of operations on state sets which is invariant to the representation of state
sets. This raises two questions:

1. How can we efficiently and precisely represent state sets in a way suitable
for flowpipe-construction-based reachability analysis?

2. How can we perform the required operations on said state sets efficiently?

In the following chapter, we present our approach towards answering both
of these questions. We will use our insights from the previous chapters and
experience of flowpipe-construction-based reachability analysis to derive a finite
set of operations on state sets, which enables us to implement a state-of-the-art
reachability analysis method for linear hybrid systems. Additionally, we present
a collection of the most commonly used state set representations in flowpipe-
construction-based reachability analysis for linear hybrid systems and highlight
their specific properties. Furthermore, we present technical details on how to
implement the presented state set representations along with the required set of
operations and improvements thereof specific to the respective representation.

All findings presented in this chapter are implemented in the C++ library
HyPro which is one of the main contributions of this thesis and which is
publicly available1. This chapter provides an overview of the landscape of state
set representations in hybrid systems reachability and is based on the work
of many people. Parts of this chapter are taken from [SÁB+17] in which we
initially presented HyPro and will not be explicitly indicated. Instead, for
each presented state set representation, we will indicate our contribution in a
separate section.

1https://github.com/hypro/hypro (checked July, 30th, 2019)
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Related Work. Different state set representations have been considered for
the usage in flowpipe-construction-based reachability analysis in the research
community, amongst them boxes [RS05; MKC09], convex polytopes [Zie95;
Fre05], ellipsoids [KV00; KV07], oriented rectangular hulls [SK03], orthogonal
polyhedra [Dan00], template polyhedra [SDI08], and zonotopes [Gir05]. The
Matlab-toolbox CoRA [Alt15] provides implementations of boxes, convex
polytopes, and zonotopes for the reachability analysis of hybrid systems. Apart
from this collection, all previously mentioned representations usually are imple-
mented and provided individually which on the one hand allows for a specialized,
more efficient implementation of reachability analysis methods, but on the other
hand does not allow to combine and compare different state set representations.

This chapter is organized as follows: After a brief overview of the structure
of HyPro, we will isolate a small set of required operations on state sets and
give an intuition on how these operations are applied in the context of state-
of-the-art flowpipe-construction-based reachability analysis methods. Starting
from Section 6.2 on, we will present our collection of state set representations
in HyPro and provide insights on how the previously deduced operations can
be implemented efficiently for the different representation types. To be able
to use various representations during analysis, we present over-approximative
conversion methods between the different state set representations in Section 6.8.
Additionally, to the collection of state set representations, HyPro also provides
various utility functions and data structures, which will be briefly discussed at
the end of this chapter in Section 6.9. The state set representations in HyPro
are based on some standard but also on novel algorithms for the computation
of different operations.

6.1 HyPro

To analyze the strengths and weaknesses of different state set representations in
hybrid systems reachability analysis, we implemented the C++ library HyPro.
The central element of this library is the collection of the most commonly
used state set representations, unified by a common interface of operations
on those representations. In combination with over-approximative conversion
methods between all representations (see Section 6.8), we enable the user to
facilitate switching between different state set representations even during
running time of a flowpipe-construction-based reachability analysis method.
Along with implementations of the most common state set representations,
HyPro provides additional tooling to enable users to implement their own
reachability analysis method quickly. This includes utility such as a parser, a
plotting framework, data structures for hybrid automata, logging, and many
more (see Section 6.9). A classical flowpipe-construction-based reachability
analysis method as presented in Section 3.4 as well as advanced data structures
and algorithms (see Chapter 7 and Chapter 8) are provided as well. The general
setup and interplay of components in HyPro is illustrated in Figure 6.4. In
the following, after deducing required operations on state sets, we will present
the provided state set representations in detail, followed by a more general
presentation of the utility shipped with HyPro.
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A B

cl(A ∪ B)

a) Convex closure of set-union.

A B

A ∩ B

b) Set intersection.

Figure 6.1: Sketch of the set operations union and intersection.

Operations

The synthesis of a common set of operations on state sets allows to unify their
implementation under a common interface (see Figure 6.4, GeometricObject).
Here we shortly review required operations on state sets and highlight their
appearance in flowpipe-construction-based reachability analysis for linear hybrid
systems. Let in the following A, B ⊆ Rd.

Union. The union A ∪ B is formally defined as the set

{x | x ∈ A ∨ x ∈ B} .

As convex sets are not closed under union, we compute the convex closure cl
of the union of two sets cl(A ∪ B), which is the smallest convex set containing
A ∪ B (see Figure 6.1a). In the following, we imply closure when we refer to
set-union operations.

With exceptions, the computation of set union usually is less-frequently
used during analysis such that improvements in its implementation usually have
little influence on the running time of a flowpipe-construction-based reachability
analysis method. Computing the union of two state sets is used during the
creation of the first flowpipe segment (see Section 3.4). Furthermore, set-union
is required in case state sets are aggregated when taking a discrete jump (see
Section 3.4).

Intersection. The intersection A ∩ B (see Figure 6.1b) is formally defined as
the set

{x | x ∈ A ∧ x ∈ B} .

In general, convex sets are closed under this operation; however, depending
on the representation, computing the closure for this representation might be
necessary (e.g., for zonotopes, see Section 6.5). The intersection between two
state sets is required when verifying guard- or invariant predicates which can
be represented as state sets. Furthermore, validating safety specifications is
performed via the intersection of the set of reachable states with the set of bad
states. This indicates that reducing the computational effort of set intersection,
in general, has a considerable influence on the running time as this operation is
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A

h

A ∩ h

a) Set intersection with a half-space.

S S′

S′ = A · S + b

b) Affine transformation.

Figure 6.2: Set operations intersection with a half-space and affine transforma-
tion.

frequently used. This influence is reduced, when purely continuous systems are
analyzed, as potential guard intersections for discrete jumps do not occur.

Note that in many cases, guards, invariants, and bad states are represented
by a conjunction of half-spaces which may be treated differently and more
efficiently. Fixed-point detection methods require computing the intersection
between a state set (`, N′) and the previously computed sets of reachable states
of a hybrid system H to detect a fixed-point. If we know that (`, N) is safe and
(`, N′) ⊆ (`, N) holds then no new information can be derived from computing
successor states from (`, N′). This renders fixed-point detection a use-case for
set-set intersection computation to check containment.

Intersection with Half-spaces. In many cases, guards, invariant conditions,
and bad states are specified as a conjunction of half-spaces, i.e., a convex
polytope in H-representation H ⊆ Rd (see Figure 6.2a). One way of computing
the intersection between H and a given d-dimensional state set A can be done
via conversion, i.e., either converting A to a H-representation or converting
H to the representation type of A. After conversion, the intersection can be
performed using set-set intersection as presented before.

However, computing the intersection of H and A directly may be faster
in some cases, when a costly conversion can be avoided and the state set
representation allows for efficient intersection with half-spaces. Addition-
ally, tests for emptiness of the result may be performed during computation
of A ∩ H; in HyPro this operation is implemented by the meta-operation
satisfiesHalfspaces(H) returning whether A ∩ H 6= ∅ holds. During this
operation, some of the presented state set representations may even detect,
whether A ∩ H = A holds. In Section 7.3 we show how this information can
be exploited to improve flowpipe-construction-based reachability analysis dur-
ing running time. As indicated before, improvements in state set intersection
with half-spaces usually have a significant influence on running times during
the analysis of hybrid systems, as this operation is required frequently in the
presence of guarded transitions and invariant constraints.
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Figure 6.3: The exponential nature of the Minkowski sum: the repeated
application on sets influences the complexity of the representation for the
resulting set. Here: the addition of three orthogonal line segments (arrows)
results in a set which has 23 vertices and 2 · 3 facets.

Minkowski Sum. The Minkowski sum is sometimes also known as dilation
(computer graphics) and represents the set-theoretic equivalent to addition.
The Minkowski sum of A and B is defined as

A⊕ B = {a + b | a ∈ A ∧ b ∈ B} .

Convex sets are closed under the Minkowski sum. However, due to its exponen-
tial nature, repeated application has a strong influence on the complexity of the
resulting output. For instance, the Minkowski sum of k pairwise orthogonal line
segments results in a k-dimensional box with 2k vertices and 2 · k facets (see
Figure 6.3).

The inverse operation, the Minkowski difference, also known as erosion
(computer graphics) is defined analogously as

A	 B = {a − b | a ∈ A ∧ b ∈ B}

but plays a minor role in this work and thus is not implemented for most state
set representations (in HyPro only boxes implement this feature).

Affine Transformation. Affine transformations are frequently applied during
flowpipe construction. For a d-dimensional set S, its affine transformation
A · S + b,A ∈ Rd×d, b ∈ Rd is defined as the set

{A · s + b | s ∈ S} .

Affine transformations can be described as a combination of rotations, scalings,
and skewings by a matrix A ∈ Rd×d and a translation whose parameters
are given by the vector b ∈ Rd. A sketch of a transformation implementing
a rotation and a translation is depicted in Figure 6.2b. Affine- and linear
transformations are used during the analysis to compute time successor sets
for a fixed time step size (see Section 3.4). Furthermore, affine and linear
transformations are often used to realize reset functions, which are assigned to
discrete jumps and allow for updating state sets upon discrete mode changes of
the modeled system.
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6. A Library for State Set Representations

A Note on Closure. The formal specification of different operations on state
sets neglects any closure properties concerning the utilized state set represen-
tation. We do not only need state sets to be convex and thus require convex
closure, but we also enforce each implemented operation to provide closure with
respect to the underlying state set representation. Ensuring closure with respect
to the representation simplifies the usage of a particular state set representation
but also may imply additional effort and introduce further over-approximation
errors. Furthermore, to maintain the soundness of the verification approach, we
have to ensure that every inexact implementation of an operation on state sets
guarantees over-approximation of the exact results. In the following sections,
we will provide details on the implementation of the most common operations
with respect to these properties. If not stated otherwise, we assume that the
operands of all operations which involve more than one state set are of the same
state set representation.

In the following, we describe the state set representations implemented
in HyPro, including both, the data type for storing state sets as well as
the operations on these data types. To simplify notation, we overload the
meaning of the symbols for operations on sets and use the same syntax for
the operations on the representations. This also holds for the closure operator
which is defined to be the convex hull for sets, but we use it in the context
of a representation type as an over-approximating representation containing
the convex hull. Note that though we use the same syntax, the result of an
operation on state sets does not need to be equal to the result of the same
operation on even exact representations of the same sets. In this work, we
discuss only over-approximative operations on representations that means that
the resulting representations encode a larger set containing the exact result. We
use subscript notation, i.e., AB to indicate that we refer to the representation of
a set A; in this case AB refers to the box representation of A (see Section 6.2).
Furthermore, we use Set(AB) to refer to the set of states contained in AB and
the operator “=” to denote set-equivalence, for instance we use Set(AB) = A
to state that the state set represented by the box-representation AB of a set A
is equivalent to A (this is generally not the case).

6.2 Boxes

The concept of a box is widely used in different contexts throughout computer
science. In the context of satisfiability solving, interval constraint propagation
(ICP), for instance, uses boxes to represent a possible solution space, which is
narrowed during the computation [VMK97; MKC09; GKC13; Sch13]. In this
context, a box represents an ordered sequence of intervals without geometric
interpretation, assigning each variable of the input problem a separate (thus
orthogonal to the other variables) solution space (see Figure 6.5a). In hybrid
systems reachability analysis, a box can be used in the same way, thus implicitly
removing any dependencies between the single state space dimensions. Conse-
quently, the box is one of the most simplistic state set representations usable in
hybrid systems reachability analysis.
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Figure 6.4: The organizational structure of HyPro. Additional to state set
representations, further data structures, additional utility functionality and a
state-of-the-art reachability analysis method are included.

Definition 6.1: Box

A vector AB of d real-valued intervals AB = (A0, . . . , Ad−1) ⊆ Id repre-
sents a d-dimensional box

A =

{
x

∣∣∣∣∣ d−1∧
i=0

xi ∈ Ai

}

where the d-dimensional set is spanned by the Cartesian product of the
given intervals such that Set(AB) = A0 × · · · × Ad−1.

We use the operator Box(A) where A ⊆ Rd to obtain the box representation
AB of A. Note that in general Set(AB) ⊇ A holds.

In the following, we assume that the bound types of all intervals are weak
bounds. This assumption is rooted in the technical representation of an interval.

As an alternative to storing a vector of intervals, a box can be represented by
two points, which contain the lower respectively upper bounds for each dimen-
sion (see Figure 6.5b). For two box representations AB = (A0, . . . , Ad−1) , BB =
(B0, . . . , Bd−1), where Ai, Bi ∈ I, the relation AB ⊆ BB holds whenever for
all x ∈ AB also x ∈ BB holds, or equivalently, if for every Ai, Bi the relation
Ai ⊆ Bi holds.
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b) A box represented by two points.

Figure 6.5: A box represented either by a vector of intervals or by its minimal
and maximal point.

Operations

In the following sections, we will highlight details of our implementation for boxes
with a focus on the operations affine transformation and intersection with a half-
space as they are non-trivial to implement efficiently and provide opportunities
for improved algorithms. Assume in the following two d-dimensional box
representations AB = (A0, . . . , Ad−1) and BB = (B0, . . . , Bd−1) where Ai, Bi ∈ I.

Test for Emptiness

Testing whether a box representation AB is empty can be done for each dimen-
sion, i.e., each interval individually linearly in the dimension of the ambient
state space:

AB = ∅ ⇔ ∃i ∈ {0, . . . , d − 1}. Ai = ∅.

Analogously, detecting whether a box is unbounded can be done individually
on the intervals as well.

Union

The closure of the union of AB and BB can be computed in a component-wise
fashion, as per definition the single state space dimensions are independent.
The closure of the union of the box representations AB, BB represents a valid
over-approximation of the convex closure of the union of the sets represented
by AB and BB:

cl(AB ∪ BB) = (cl(A0 ∪ B0), . . . , cl(Ad−1 ∪ Bd−1)) ,

where cl(Ai ∪ Bi) = cl([Ai, Ai] ∪ [Bi, Bi]) = [min(Ai, Bi), max(Ai, Bi)] (see Sec-
tion 2.4). Therefore Set(cl(AB ∪ BB)) ⊇ cl(AB ∪ BB) holds. This definition
naturally extends to computing the convex closure of sets of boxes.

Intersection

Analogously to the union, the intersection of AB and BB can be computed in a
component-wise fashion:

AB ∩ BB = (A0 ∩ B0, . . . , Ad−1 ∩ Bd−1) .
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Special care has to be taken in case the intersection is empty, which corresponds
to at least one interval Ai ∩ Bi being empty. In this case, the computation may
preemptively be stopped, and an empty box representation returned, as a box
is empty as soon as one of its intervals is empty. Note that for box-intersection
Set(AB ∩ BB) = Set(AB) ∩ Set(BB) holds.

Intersection with a Half-space

Boxes are not closed under intersection with a half-space as the exact result
in general is a convex polytope. We worked on several approaches on how to
efficiently intersect a box A with a half-space h and over-approximate the result
by the smallest box representation A′

B such that A′
B ⊇ A ∩ h holds. In the

following, we present two approaches that we have implemented in HyPro to
obtain Box(AB ∩ h) and discuss their efficiency.

Via Conversion. As HyPro already provides an interface to a linear opti-
mization framework (see Section 6.7), a simple, yet inefficient implementation
can be based on conversion. The constraints defining the box along with the
constraint defining the half-space implicitly represent a convex polytope in
H-representation. We can use the conversion-methods implemented in HyPro
to obtain the result:

AB, h
to Hpoly−−−−−→ AH , hH

∩−−−−→ A′
H

to Box−−−→ A′
B.

The computational effort of this approach highly depends on the implementation
of the conversion method (see Section 6.8). While the conversion from box-
representation to a convex polytope in H-representation can be done efficiently,
the converse requires solving 2d linear programs to obtain the interval bounds
for each variable in the resulting box.

Via Interval Arithmetic. Conversion-based approaches for most operations
on state set representations provide an intuitive way to compute the result.
Nonetheless, those approaches neglect the structure of the representation as they
generalize the problem statement. Especially for boxes, we aim at providing
tailored approaches that exploit the properties of the state set representation.

We propose to compute box-halfspace intersection in the box representation
by using interval constraint propagation (ICP) (see Section 2.4). The idea of ICP
is to take a d-dimensional box domain for d variables and a set of (in)equalities
over the variables. According to some heuristics, ICP iteratively selects one
(in)equality and one variable appearing in it, transforms the inequality to have
the selected variable alone on the left-hand-side, uses interval arithmetic to
evaluate the right-hand-side, and contracts the interval domain of the selected
variable (left-hand-side) according to the relation symbol of the (in)equality.
For example, assuming the box domain x ∈ [0, 10], y ∈ [2, 7] and z ∈ [2, 3],
from x + y ≤ z we can conclude

x + y ≤ z ⇒ x ≤ z − y ∈ [2, 3]− [2, 7] = [−5, 1]

⇒ x ∈ [0, 10] ∩ (−∞, 1] = [0, 1]
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Note that since z − y is an upper bound on x, only the upper bound on z − y
(more precisely, the upper bound on z with positive coefficient 1 and the lower
bound on y with negative coefficient −1) can be used to contract the upper
bound of x.

ICP is in general incomplete and might not terminate. However, in the
particular case of a single linear inequality nT · x ≤ c, we have the following
nice property.

Lemma 1. ICP using a single linear inequality for contractions terminates
after applying one contraction for each involved variable. Furthermore, the final
contracted box domain is independent of the contraction order.

Proof. Assume a mapping xi → Bi for xi ∈ Var, i ∈ {0, . . . , d − 1} represented
by the box B = (B0, . . . , Bd−1), and assume a linear inequality constraint
nT · x ≤ c, i.e.,

n0x0 + n1x1 + · · ·+ nd−1xd−1 ≤ c. (6.1)
Let I = {0, . . . , d − 1}, I+ = {i+ ∈ I | ni+ > 0}, I− = {i− ∈ I | ni− < 0}, and
I0 = {i ∈ I | ni = 0}. We can transform the above inequality for each i+ ∈ I+

to
xi+ ≤ c − ∑

j+∈I+\{i+}

∣∣∣∣nj+

ni+

∣∣∣∣+ ∑
j−∈I−

∣∣∣∣nj−

ni+

∣∣∣∣ . (6.2)

and for each i− ∈ I− to

xi− ≥ −c + ∑
j+∈I+

∣∣∣∣nj+

ni−

∣∣∣∣− ∑
j−∈I−\{i−}

∣∣∣∣nj−

ni−

∣∣∣∣ . (6.3)

ICP can now use all the above inequalities (Equations (6.2) and (6.3)) to
evaluate the right-hand-sides using interval arithmetic and use the relation
symbols to contract the interval domains of the left-hand-side variables.

Equation (6.2) can be used to contract the upper bound of each i+ ∈ I+,
whereas Equation (6.3) can lead to contracted lower bounds for xi− , i− ∈ I−.
Thus the set of all bounds that can be contracted is

lhs =
{

Bi
∣∣ i ∈ I−

}
∪
{

Bi
∣∣ i ∈ I+

}
.

In Equation (6.2), only the upper bound of the right-hand-side is used to
determine the contraction for the (upper bound of the) left-hand-side, i.e., only
the lower respectively upper bounds for variables with positive respectively
negative coefficients. The case for Equation (6.3) is analogous: the lower bound
of the left-hand-side is contracted using lower respectively upper bounds for
variables with positive respectively negative coefficients. That means, the sets
of all bounds that influence the contracting intervals are

rhs =
{

Bi
∣∣ i ∈ I−

}
∪
{

Bi
∣∣ i ∈ I+

}
.

We can observe that the two above sets, the influencing bounds rhs and the
influenced bounds lhs, are disjoint. Therefore, the contraction step for every
single variable is independent of all other contraction steps. This implies that
the contraction order is irrelevant, and also that a second contraction step for
the same variable has no additional effect.

84



6.2. Boxes

Consequently, we can compute the intersection of a half-space and a box by
using interval constraint propagation to update the variable intervals once for
each variable in arbitrary order, with an effort that is quadratic in the state
space dimension. Example 6.1 provides an example for this approach.

Example 6.1: Half-space Intersection

The result of the intersection of the 2-dimensional box B = ([1, 2.5], [1, 2])
and the half-space h = {x | x0 − 2x1 ≤ −2} is obtained using ICP as
described before. The resulting box is depicted below.

Solving for x0:

x0 ≤ 2x1 − 2 ∈ [2, 4]− [2, 2] = [0, 2]

x0 ∈ [1, 2.5] ∩ (−∞, 2] = [1, 2]

Solving for x1:

x1 ≥ 0.5x0 + 1 ∈ [0.5, 1.25] + [1, 2] = [1.5, 3.25]

x1 ∈ [1, 2] ∩ [1.5, ∞) = [1.5, 2]

x1

x0

n

Minkowski Sum

The Minkowski sum of AB and BB can be computed component-wise as

AB ⊕ BB = ([A0 + B0, A0 + B0], . . . , [Ad−1 + Bd−1, Ad−1 + Bd−1])

= (A0 + B0, . . . , Ad−1 + Bd−1) .

Box representations are closed under the Minkowski sum, i.e., Set(AB ⊕ BB) =
Set(AB)⊕ Set(BB). In contrast to most other set representations, for box
representations computing the Minkowski difference being the inverse operation
can be done efficiently using interval arithmetic:

AB 	 BB = [A0 − B0, A0 − B0]× · · · × [Ad−1 − Bd−1, Ad−1 − Bd−1]

= (A0 − B0, . . . , Ad−1 − Bd−1) .

Affine Transformation

Boxes are not closed under linear transformation with arbitrary matrices A ∈
Rd×d. Applying an affine transformation x′ = Ax + b to a box representation
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BB, where A 6= Id thus requires additional effort to over-approximate the result
to obtain the smallest box B′

B for which Set(B′
B) ⊇ Set(BB) · A+ b holds. In

the following, we present two approaches we developed in HyPro.

Via Conversion. One way to obtain a correct over-approximation of the affine
transformation of BB of a box B is similar to the approach for convex polytopes
in V-representation. The result is obtained by applying the operation on each
vertex vi of BB and afterward over-approximating the result by a box. The set
of transformed vertices

V′ = {Av + b | v ∈ vertices(BB)}

can be used to obtain the resulting box representation by collecting the minimal
and maximal coordinates over all vertices per dimension:

B′
B =

(
B′

0, . . . , B′
d−1
)

where

B′
i = max

{
vi
∣∣ v ∈ V′} and

B′
i = min

{
vi
∣∣ v ∈ V′} .

A d-dimensional box representation BB = (B0, . . . , Bd−1) has exactly 2d vertices
which can be computed by enumerating all combinations of lower and upper
bounds of the intervals Bi for the respective dimension. The linear transforma-
tion of a single vertex requires d2 multiplications. In total this approach has an
exponential running time O(2d).

Via Interval Arithmetic. As each dimension in a box representation BB is
represented by an interval, it is natural to employ interval arithmetic for all
operations. The second algorithm for computing an affine transformation of a
box can be found in Algorithm 3. The idea is to compute the new lower and
upper bounds for each dimension iteratively, where the contribution of every
lower, respectively upper bound to the final result is updated continuously using
interval arithmetic, which results in a quadratic running time.

After having computed the result of the linear transformation of BB by A,
the translation by the vector b can be added separately on the boundaries to
realize an affine transformation B′

B = A · (B0, . . . , Bd−1)
T + b.

Algorithm 3: Iterative affine transformation for boxes.
Input: BB = (B0, . . . , Bd−1), a matrix A ∈ Rd×d, a vector b ∈ Rd

Output: B′
B =

(
B′

0, . . . , B′
d−1
)
= A · BB + b

for i ∈ {0, . . . , d − 1} do
B′

i := bi
for j ∈ {0, . . . , d − 1} do

B′
i := B′

i +Aij · Bj
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Box(N′
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N′′
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Box(N′′
0 )

·A ·A

Figure 6.6: Accumulated wrapping effect of two rotations of a set of variable
valuations N0 (dark petrol) represented by a box representation (petrol).

Wrapping Effects. Especially boxes as a state set representation are known
to suffer from the so-called “wrapping effect”, which refers to the over-ap-
proximation errors introduced during computation [Le 09]. In HyPro, we
require closure of our state set representation for all operations. To achieve
this, additional over-approximation is introduced during the computation with
boxes, as the result of each operation is approximated by its bounding box to
achieve closure with respect to the state set representation. Especially linear or
affine transformations might introduce large errors (see Figure 6.6) depending
on the transformation matrix A. As a consequence, the implicit assumption
that a shorter time step size δ results in a more precise approximation (see
Section 3.4) does not necessarily hold for boxes. We illustrate this behavior
with the following example.

Example 6.2: Wrapping Effects

Consider the two-dimensional box representation BB = ([2, 3] , [1, 4]) and
the matrix A

A =

(
cos(45) − sin(45)
sin(45) cos(45)

)
=

( 1√
2

− 1√
2

1√
2

1√
2

)

which represents a rotation of 45 degrees in the mathematically positive
sense (counter-clockwise) around the origin. Sequential application of
two linear transformations of BB by A results in the following:

B′
B =A · (A · BB)

=A ·
([

−2√
2

,
2√
2

]
,
[

3√
2

,
7√
2

])T
=

([
−9
2

,
−1
2

]
,
[

1
2

,
9
2

])T
.

In contrast to this, applying a transformation B′′
B = A2 · BB leads to the

more precise resulting box

B′′
B = A2 · BB =

(
0 −1
1 0

)
· BB = ([−4,−1] , [2, 3])T

for which B′′
B ⊆ B′

B naturally holds.
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Computing the Support

Boxes are a subclass of convex polytopes, i.e., a conversion to a polytope
for instance in H-representation allows using linear optimization methods to
compute the support of a box. However, as this is computationally expensive
and we know that a box bounds the single state space dimensions independently,
we use a more efficient approach in HyPro. To compute the support

ρBB(l) = sup
b∈Set(BB)

(lT · b)

in direction l ∈ Rd (see Section 6.4), we again employ interval arithmetic:

ρBB(l) = sup
b∈Set(BB)

lT · b

⊆ sup lT · BB

= sup(l0B0 + · · ·+ ld−1Bd−1)

= sup(l0 · B0) + · · ·+ sup(ld−1 · Bd−1).

The supremum point p ∈ B for a given direction l, i.e., the point where for
all b′ ∈ B the inequation lT · b′ ≤ lT · p holds, is a furthest point contained in
B towards l. If B is a closed, convex set, there is always a vertex of B which
satisfies this property.

A geometric intuition behind finding a supremum point p for a box repre-
sentation BB is given by considering the normal fan of BB (see Definition 2.11).
The normal vectors ni of the half-spaces defining the box representation BB
form the normal fan N (BB) of BB.

Recall that each vertex v of a d-dimensional convex set S, specified by an
intersection of a finite set of linear in-equations hi = {x | ni · x ≤ ci} (i.e., a
convex polytope in H-representation), is determined by the intersection of at
least d hyperplanes h′i = {x | ni · x = ci}. Furthermore, boxes are a subclass of
convex polytopes in H-representation where all half-spaces are axis-aligned.

The resulting supremum point p for a given direction l is defined by the faces
of the smallest d-dimensional cone C in N (BB) containing l (see Figure 6.7).
As the d-dimensional cones in the normal fan of a box define the orthants of the
ambient space, the hyperplanes defining p are the faces bounding the orthant l
lies in, i.e., the coordinate planes.

From knowing the orthant o which contains l, we can deduce the d hy-
perplanes defining p component-wise for a box representation BB. For each
dimension i, the sign of li determines, whether either the upper or the lower
bound of the corresponding interval Bi is a hyperplane defining p—each coordi-
nate pi of p is defined by either the upper or lower bound of Bi. The support
for l in BB can now be computed by lT · p. This approach provides a method
to compute the support for BB which is linear in the state space dimension.

Experimental Results

We have run a selection of the operations for boxes to experimentally validate
our implementation. All benchmarks were run on a machine with 4 × 4 GHz
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B

n1

n2

l
C

Figure 6.7: The vertex of a box B (petrol) defining supb∈B lT · b is defined by
the faces of the smallest cone C containing l in the normal fan N (B) (light
petrol).

Intel Core i7 CPUs and a memory limit of 8 GiB. We provide plots of the
running times for the operations intersection with a half-space (see Figure 6.8a),
affine transformation (see Figure 6.8c), and computing the support of a box (see
Figure 6.8e). For each operation, we present an additional plot (Figures 6.8b,
6.8d and 6.8f) which shows an excerpt with a scaled y-axis to get more insights
into the running times of the interval arithmetic-based approaches. All recorded
running times represent averages over 10 000 operations performed except for
the naive implementation of affine transformation where an average over 10
runs was used to keep running times within reasonable bounds. All experiments
were performed on unit boxes, i.e., box representations where each Bi = [−1, 1].
We used randomly created matrices and vectors for the evaluation of the affine
transformation. To evaluate intersection with a half-space, we used half-spaces
hi with randomly created normal vectors and an offset of zero to ensure a
guaranteed intersection with the unit box, as 0 ∈ h̄i holds. Computing the
support on unit boxes was evaluated using randomly created support directions.

The running times indicate that the approach using interval arithmetic for
all operations on boxes pays off in comparison to conversion-based approaches.
Intersections with half-spaces, using conversion approaches to convex polytopes
in H-representation require solving 2 · d linear programs when converting back
to boxes, making up the major part of the running time. Similarly, computing
the support of a box by using its H-representation requires solving one linear
program, while the proposed improvement requires only linearly many com-
parisons and one vector multiplication. In HyPro, we use an external library
for linear programming (glpk), which adds additional overhead for calling the
solver and constructing the problem instance. The naive implementation of an
affine transformation of a box using conversion to a polytope in V-representa-
tion requires computing all 2d vertices. Afterward, the affine transformation is
applied on each vertex individually and the conversion back to a box can be
done linearly in the number of vertices. In contrast to that, implementing affine
transformations via interval arithmetic pays off in terms of computational effort,
as only d2 matrix multiplications plus 2 · d vector multiplications are required,
also observable in the running times. Furthermore, we ran into memory limits
for affine transformations with the naive approach for more than 24 dimensions.
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c) Affine transformation of a box.
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d) Affine transformation of a box
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Figure 6.8: Benchmark results for single operations on boxes. The running times
are averaged over 10 000 runs (except affine transformation), running times of
the current implementation are depicted in petrol, naive implementations are
depicted in light petrol.
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6.3 Convex Polytopes

Convex polytopes find many applications in computer science, for instance in
program verification, i.e., abstract interpretation to represent sets of variable
valuations, as solution sets to linear programs, or naturally in computer graphics.

In the field of flowpipe-construction-based reachability analysis for linear
hybrid systems, convex polytopes can be considered among the most precise of
the commonly used state set representations. This is rooted in the fact that
polytopes are closed under most operations required during the analysis. In fact,
only for the union of two convex polytopes A, B additional effort is required
to obtain the smallest convex polytope C ⊇ A ∪ B, which can be computed as
the convex hull of A ∪ B. In hybrid automata, predicates such as guards and
invariants are commonly described as polytopal sets and thus need no further
conversion during computation. Additionally, following approaches as presented
in [Le 09], the first segment of a flowpipe (see Section 3.4) can be most precisely
described as a convex polytope.

Note that state set representations such as boxes (see Section 6.2) and zono-
topes (see Section 6.5) are a subclass of convex polytopes; state set operations
on them can be implemented using conversion methods. However, as polytope
operations and conversion methods are in general comparatively expensive,
specialized methods are usually applied.

As expected, the increased precision of convex polytopes comes at the
cost of increased computational effort required during the analysis. In the
following sections, we provide general information about convex polytopes
based on [Zie95] and present our own ideas on the implementation of convex
polytopes for flowpipe-construction-based reachability analysis in HyPro.

Definition 6.2: Polytope

A d-dimensional convex polytope PH in H-representation is a pair (N, c)
with N ∈ Rm×d and c ∈ Rm, which defines a convex set

PH =
m−1⋂
i=0

hi

as the intersection of finitely many half-spaces {h0, . . . , hm−1} with
hi = {x ∈ Rd | ni,_ · x ≤ ci} (see Definition 2.8). Recall that ni,_ refers
to the i-th row of N.
The same polytope can also be represented as the convex hull (see
Section 2.3) of a finite set PV = {v0, . . . , vm−1} of vertices vi ∈ Rd

(V-representation):

PV =

{
x

∣∣∣∣∣ x =
m−1

∑
i=0

λi · vi ∧
m−1

∑
i=0

λi = 1 ∧ λi ∈ [0, 1]

}
.

In the following, we use the function cHull(V) over a finite set of vertices
V = {v0, . . . , vm−1} to compute the convex hull of V. Furthermore, we use
|(N, c)| respectively |V| to refer to the number m of half-spaces respectively
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Table 6.1: Computational effort for different operations depending on the
underlying polytope representation. A “-” indicates that for the operation no
polynomial algorithm is known and the operation usually is implemented via
conversion to the other representation while a “+” indicates the operation can
be done with polynomial computational effort.

· ∪ · · ∩ · · ⊕ · A· ρ(·) · ?
= ∅ · ∩ h

H-representation - + - - + - +
V-representation + - + + - + -

vertices required to represent P as a notion of its representation complexity of
PH respectively PV . Note that the representation of a polytope is not unique: a
H-representation of a polytope contains all defining half-spaces but perhaps
also some further implied inequalities. Analogously, a V-representation might
contain not only all vertices but any point from the convex hull of the vertices.
We call a minimized representation reduced. We will discuss methods on how to
reduce the representation of polytopes in Section 6.3. The operations presented
in the following do not rely on the operands being reduced but in general profit
from a reduced representation to save computational effort.

For reasons of simplicity, we use the term polytope and convex polytope
interchangeably in the rest of this work. Furthermore, we always consider
bounded sets, i.e., convex polyhedra which do not contain any ray or cone (see
Definition 2.10). For details about convex polyhedra, i.e., possibly unbounded
polytopes, we refer to [Zie95]. In this section, we present details on our own
implementation of convex polytopes including several reduction techniques.

Currently, there are several implementations of convex polytopes available,
e.g., the Parma Polyhedra Library (PPL) [BHZ08] or Polymake [GJ00]. Addi-
tional to our implementation, HyPro provides a wrapper class for PPL [BHZ08],
which provides an efficient implementation for convex polytopes along with the
most operations on state sets required for flowpipe-construction-based reacha-
bility analysis. For the future, we plan to add further wrapper classes to other
implementations such as Polymake [GJ00].

Operations

In the following, we present the general ideas for the most common operations
on convex polytopes required during flowpipe-construction-based reachability
analysis. From Table 6.1, we can already see that most operations on convex
polytopes behave complementary concerning running times and complexity,
depending on the internal representation. Therefore, many operations rely on
conversion between the H-representation and the V-representation. Assume
in the following two d-dimensional polytopes AV = VA = {a0, . . . , am−1} and
BV = VB = {b0, . . . , bn−1} in V-representation. Also assume two d-dimensional
polytopes AH = (M, c) and BH = (N, e) in H-representation represented as
the intersection of m respectively n half-spaces.
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a) Two former vertices (dots in petrol)
are no vertices in the closure of the union
of AV and BV while the other vertices of
AV and BV (dots in green) are.

h′

h′′

b) The closure of the union of AH and
BH requires to compute new half-space
normal vectors for h′ and h′′ which can-
not be derived from original half-spaces.

Figure 6.9: The closure of the convex union of two polytopes (dark petrol) in
V-representation and H-representation.

Test for Emptiness

Testing whether AH = ∅ can be done using linear programming (LP) and
checking whether {Mx ≤ c | x ∈ Rd} = ∅ using an LP- or SMT-solver, for
instance glpk [Mak18], SMT-RAT [CKJ+15], soplex [Wun96], or Z3 [MB08].
Testing whether BV , a convex polytope in V-representation is empty is less
involved, as we only consider bounded sets. As a consequence, checking whether
a polytope is empty is equivalent to checking whether the set of vertices defining
it is empty, i.e., testing whether |VB| = 0.

Union

The convex closure of the union of AV and BV in the V-representation can be
represented by the union of the two sets of vertices

cl(AV ∪ BV) = VA ∪ VB

such that cHull(VA ∪ VB) = cl(AV ∪ BV) = cl(Set(AV) ∪ Set(BV)) holds. Note
that the set of points VA ∪VB might contain redundant points (see Figure 6.9a).
In Section 6.3, we will present methods on how to reduce representations.

The convex closure of the union of two d-dimensional polytopes AH and BH
in the H-representation is more involved. From the definition we obtain

cl(A ∪ B) = {λa + (1 − λ)b | λ ∈ [0, 1] ∧ a ∈ A ∧ b ∈ B} .

However, this does not directly allow to derive a new set of half-spaces exactly
defining the H-representation of the polytope cl(AH ∪ BH) as computing the
closure may introduce new half-spaces (see Figure 6.9b).

In HyPro, the union of two polytopes in H-representation is computed
using conversion to V-representation using vertex enumeration methods.
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Intersection

The intersection of AH and BH in H-representation specified by the intersection
of n, respectively m half-spaces can be obtained directly as

AH ∩ BH = {x | x ∈ AH ∧ x ∈ BH}

=

x

∣∣∣∣∣∣
m−1∧
i=0

mi_ · x ≤ ci ∧
n−1∧
j=0

nj_ · x ≤ ej


=

((
M
N

)
,
(

c
e

))
.

Thus, intersection for polytopes in H-representation can efficiently be com-
puted by unifying the sets of defining half-spaces to compute AH ∩ BH, where
AH ∩ BH = Set(AH) ∩ Set(BH) holds. Note that this approach does not nec-
essarily result in a reduced representation, as redundant constraints may be
contained (see Section 6.3 for information on how to handle redundancy). While
the intersection in H-representation allows obtaining the resulting polytope
directly, this is not the case for the V-representation. Using the formal definition,
we obtain

A ∩ B = {x | x ∈ A ∧ x ∈ B}

=

{
x

∣∣∣∣∣ x =
m−1

∑
i=0

λi · vi ∧
m−1

∑
i=0

λi = 1 ∧ λi ∈ [0, 1] ∧ vi ∈ VA∧

x =
n−1

∑
j=0

λj · vj ∧
n−1

∑
j=0

λj = 1 ∧ λj ∈ [0, 1] ∧ vj ∈ VB

}
.

From this description, the new set of vertices defining AV ∩ BV is not directly
accessible—in HyPro intersection between two polytopes in V-representation
is handled via conversion to H-representation.

Intersection with a Half-space

The intersection of a convex polytope A and a half-space h is usually accompa-
nied by a test for emptiness afterward (see Section 6.1). Detailed information
about the result of an intersection with a half-space may be used during com-
putation and can be obtained with little effort. Considering a polytope AH in
H-representation, the intersection of a half-space h with AH is computed by
adding h as a constraint to AH following the definition of a H-representation
as a conjunction of half-spaces. Testing AH ∩ h = ∅ is performed afterwards
and can be accompanied by redundancy checks (see Section 6.3). Note that
this approach naturally extends to sets of half-spaces, as we can interpret h as
a convex polytope in H-representation with only one constraint.

For a polytope BV in V-representation, computing the intersection with
h cannot be performed directly. We may always convert BV to H-represen-
tation and use the above method, however in HyPro, we perform a set of
computationally less expensive tests, before using the computationally costly
conversion approach. By verifying the coordinates of the vertices in VB against
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the constraint defining the half-space, we can check whether the respective
vertex lies inside the half-space, i.e., satisfies the inequation. In case all vertices
satisfy h, we know that BV is fully contained in h; if no vertex satisfies h, the
result will be empty. In both cases, we have avoided the costly transformation
to H-representation, which is required whenever h partially intersects with BV .
As we test each point in VB against h, it helps if VB = vertices(BV) or at least
if |VB|/|vertices(BV)| is small.

Minkowski Sum

The definition of the Minkowski sum of two sets directly provides an approach
towards computing the Minkowski sum of AV and BV

AV ⊕ BV = {a + b | a ∈ VA ∧ b ∈ VB}

where Set(AV ⊕ BV) = Set(AV)⊕ Set(BV) holds. In general, it holds that
AV ⊕ BV ⊇ vertices(AV ⊕ BV) while AV ⊕ BV = vertices(AV ⊕ BV) only holds
in special cases, for instance if |VA| = 1 or |VB| = 1.

Algorithms based on zonotope construction [Fuk04; WF05] to compute
the Minkowski sum of two polytopes have been developed to overcome this.
Additionally, some of these algorithms allow extracting the resulting facets
during computation. A variant of the algorithm presented in [Fuk04] which
has been implemented in the course of the Master thesis of Christopher Ku-
gler [Kug14] is integrated in HyPro. To be fully applicable, the method requires
full knowledge of the neighborhood relations between the vertices of AV and
BV to compute AV ⊕ BV . In combination with convex hull algorithms which
allow to determine the neighborhood relation of the vertices, such as the one
presented in [AF92], the combined method should result in good performance as
reduction is not necessary afterward using this approach. However, the current
version of HyPro does not provide an implementation of this method.

Computing the Minkowski sum of two polytopes in H-representation is
more involved and currently implemented via conversion to V-representation in
HyPro.

Affine Transformation

Computing the result A′
V of the affine transformation A′

V = A · AV + b of AV

by a matrix A ∈ Rd×d and a vector b ∈ Rd can be directly performed on the
set of vertices of AV

A′
V =

{
A · vi + b

∣∣∣ A ∈ Rd×d ∧ b ∈ Rd ∧ vi ∈ VA

}
.

In general, for polytopes in H-representation, conversion to V-representation
can be used. However, for the linear transformation of BH = (N, e) in case
rank(A) = d (A is invertible) holds, we can use the following transformation
with y = Ax:

A · BH =
{
Ax

∣∣∣ nT
i · x ≤ ei ∧ x ∈ Rd

}
=
{

y
∣∣∣ nT

i · A−1 · y ≤ ei

}
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y

x

BV AV

AV ⊕ BV

Figure 6.10: Minkowski sum of two polytopes AV and BV in V-representa-
tion. The additional points inside the resulting set (petrol) are points in the
non-reduced point set when computing the Minkowski sum.

which allows to compute the linear transformation on polytopes in H-represen-
tation directly by modifying the single half-spaces nT

i · x ≤ ei of BH. Using the
same principle, we can reconsider b and y = Ax + b:

A · BH + b =
{
Ax + b

∣∣∣ nT
i · x ≤ ei

} ∣∣ x = A−1(y − b)

=
{

y
∣∣∣ nT

i · A−1 · (y − b) ≤ ei

}
=
{

y
∣∣∣ nT

i · A−1 · y − nT
i · A−1 · b ≤ ei

}
=
{

y
∣∣∣ nT

i · A−1 · y ≤ ni · A−1 · b + ei

}
to compute the affine transformation B′

H = A · BH + b. Thus, in case A
is invertible P′ can be computed as a simple transformation of the normal
vectors and the offsets of the half-spaces (N, e) defining BH. Note that for the
application in flowpipe-construction-based reachability analysis this case often
occurs, as the matrix exponential of a matrix defining the flow and the matrix
approximating it are in most cases invertible (see Section 3.4). Consequently,
only reset functions on discrete transitions which are not invertible will trigger
the expensive conversion-based approach.

Computing the Support

The support ρP(l) of a PH for direction l ∈ Rd can be computed using standard
LP techniques such as the simplex method [Dan63] implemented in state-of-
the-art LP-solvers. The vector l is used as the coefficients of the cost function
which is to be maximized

ρPH (l) = sup
p∈Set(PH)

〈l, p〉 .
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HyPro provides a generalized interface for linear optimization which allows
to exchange the optimization backend and choose between different solvers or
employing several solvers incrementally (see Section 6.7).

Reduction Techniques

Irregardless of the representation used, certain operations, for instance the
Minkowski sum or union increase the representation complexity (see Figure 6.10).
Furthermore, the underlying number representation plays an important role
in the size of the representation. For instance, when using arbitrary precision
rational types mpq_class as implemented in the gmp library, repeated linear
transformations have a strong influence on the representation size of e.g.,
coefficients for normal vectors of half-spaces.

In general, more complex representations do not only increase the required
storage space but more importantly have a strong influence on the running time
of an operation. In the following paragraphs, we present possible reduction
techniques implemented in HyPro, which allow us to keep the number of
half-spaces respectively vertices to represent a set small.

Redundancy Removal. As presented before, some of the operations on poly-
topes return results, which are non-reduced. The running time of single op-
erations on convex polytopes is usually sensitive to the number of vertices
respectively half-spaces. Consequently, repeated application of such operations
leads to a drastic increase in complexity rendering flowpipe-construction-based
reachability analysis using polytopes as a state set representation in practice
infeasible.

Consider the intersection of a convex polytope AH with a half-space h. The
result of AH ∩ h can be obtained by adding h to the set of constraints defining
AH. However, if h does not add any new information, i.e., h does not define a
face of AH (see Figure 6.11a), adding h to AH will only increase its complexity.
This might slow down later operations which are sensitive to the number of
half-spaces defining AH. To overcome this, HyPro features a simple reduction
mechanism that can be used to detect and remove redundant constraints for
polytopes in H-representation.

Definition 6.3: Redundant Constraint

Assume a predicate P ∈ PredVar defined over a finite set of variables Var
being a Boolean combination of constraints pi.
We call a single constraint pi redundant, if Sat(P \ pi) = Sat(P).

Convex polytopes in HyPro in H-representation are represented as a
conjunction of weak linear inequalities. Based on these properties, we provide a
simple method to detect the redundancy of a constraint (see Algorithm 4).

The method described in Algorithm 4 iterates over the constraints ni_ · x ≤ ci
in AH = (N, c) and checks for each inequation ni_ · x ≤ ci individually, whether
the intersection of AH and the hyperplane ni_ · x = ci is empty.
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y

x

c0

c1

c2

P

c3

a) The constraint c3 is redundant in PH
as it does not intersect any facet of PH.
The hatched area (petrol) shows the half-
space h defined by the inverse of c3 which
is used to determine redundancy if PH ∩
h = ∅.

y

x

c0

c1

P

c2

b) The constraint c2 is not redundant as
it defines a facet of PH . The hatched area
(petrol) shows the half-space defined by
the inverse of c2, the non-empty intersec-
tion which gives the facet defined by c2
is highlighted (green).

Figure 6.11: Illustration of the redundancy-detection method implemented in
HyPro to determine whether single bounding hyperplanes of constraints in PH
define a facet in PH.

Algorithm 4: Detecting redundant constraints of convex polytopes
in HyPro.

Input: A convex polytope AH = (N, c).
Output: A convex polytope A′

H where |A′
H | ≤ |AH | and

Set(A′
H) = Set(AH) holds.

A′
H := AH

if Sat(AH) 6= ∅ then
for i ∈ |AH | do

hi = (ni_, ci)
A′

H := A′
H \ hi

if Sat(A′
H ∧ (−ni_,−ci)) = ∅ then

A′
H := A′

H \ hi

return A′
H
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nn′

Figure 6.12: Reducing the number representation of the coefficients in the
normal vector n of a half-space to obtain a new normal vector n′ while ensuring
over-approximation (light petrol). The resulting half-space is shifted to ensure
all original vertices are contained.

As we know that all constraints are defined by weak inequations, we can
realize a check for the redundancy of a single constraint ni_ · x ≤ ci by inverting
it, i.e., by negating its normal vector and offset (see Figure 6.11).

In case AH has a non-empty intersection with −ni_ · x ≤ −ci, this indicates
that the corresponding original constraint defines a face of PH. The geometric
interpretation of the algorithm takes each half-space and inverts it to obtain
A′

H—as constraints are defined by a weak inequation the bounding hyperplane
of the respective constraint ni_ · x ≤ ci is still in A′

H if it is non-redundant (see
Figure 6.11b). Note that to reduce computational effort, polytopes in HyPro
use a cache to store whether redundancy has been removed.

Similar to redundancy for polytopes in H-representation, we can define
redundancy for polytopes in V-representation. The set of points VB used to
define a polytope BV in V-representation contains redundant points whenever
VB \ vertices(BV) 6= ∅. To find redundant points pi ∈ VB, we make use of the
definition of a polytope in V-representation. For each pi ∈ VB, we create a
linear program

L : pi = ∑
j 6=i

λj · pj ∧ 1 = ∑
j 6=i

λj ∧
∧
j 6=i

λj ∈ [0, 1]

which has a solution if pi can be represented as a convex combination of the
other points in VB and consequently is not an extreme point of Set(PV). Using
the LP backend in HyPro, we can determine that pi is redundant if L has a
solution and remove it from VB.

Number Reduction. To keep the representation of rational number types
low, we require a dedicated rounding mechanism which reduces the number
representation but at the same time guarantees over-approximation. In the
following, we present an approach for polytopes in H-representation, which
allows reducing the representation size of single half-spaces.

A half-space h =
{

x
∣∣ nT · x ≤ c

}
is defined by its normal vector n and the

offset c. While rounding c in a way that ensures over-approximation is straight
forward (upward rounding), rounding n is more involved as simple rounding of
the single coefficients of n does not necessarily ensure over-approximation.
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To reduce the number representation of a single half-space h, the set of
vertices V which lie on this plane is required. In a two step-process first the
normal vector n is rounded according to a rounding policy, e.g.,

n′ =
⌊ n

lvalue · limit

⌋
where lvalue denotes the largest coefficient in n and limit is a predefined upper
bound for the size of the number values. The resulting normal vector n′ will
most probably point in a slightly different direction than the original vector (see
Figure 6.12) unless n and n′ are linearly dependent which is hard to predict or
even to aim for during construction. To ensure over-approximation, the offset
c can be adjusted such that all original vertices are contained in the resulting
polytope:

c′ = max
v∈V

(⌈
n′ · v

⌉)
.

The new half-space h′ = {x | n′ · xT ≤ c′} now has a smaller number represen-
tation but also contains all original vertices.

To reduce the number representation of a polytope BV in V-representation
we use a bounding-box-based approach. To determine the rounding direction of
each component for each vertex vi ∈ vertices(BV) we compute the barycenter b
of BV

b =
∑i vi

|vertices(BV)|
.

The components of the offset vector vi − b determine the rounding directions for
each component of vi. Intuitively, this approach pushes each vertex vi further
towards the half-spaces defining the bounding box of BV as the components in
vi are handled independently and the offset vector ensures outward rounding.

Shape Reduction. This paragraph presents ideas to reduce the representation
PH of a polytope P in H-representation while maintaining over-approximation.
These approaches have been implemented in HyPro for convex polytopes
during the course of the Bachelor thesis of Igor Bongartz [Bon16], but are yet to
be automated in the sense that they have to be called manually in the current
state. As such, this paragraph suits as a pointer towards future development
for reduction methods for convex polytopes.

We have synthesized three families of possible reduction approaches: drop-
reduction, union-reduction, and template-based reduction. While the first two
families are dedicated to V- and H-representations of polytopes, template-based
reduction provides a more general approach which is also applicable to other
state set representations. In the following, we give more insights into the
approaches.

Drop-reduction techniques refer to approaches, which remove selected half-
spaces hi of PH =

⋂m−1
j=0 hj to reduce the representation while maintaining

over-approximation to obtain

P′
H =

m−1⋂
j=0,j 6=i

hj
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ni

a) Reduction by con-
straint removal.

ni
n′

j n′
k

b) Smoothing after con-
straint removal.

ni

c) Harmful smoothing
introduces additional
over-approximation error.

Figure 6.13: Different effects of shape reduction of a polytope in H-represen-
tation via removal of constraints. Introduced over-approximation errors are
depicted in lighter petrol.

such that Set(PH) ⊆ Set(P′
H) holds. Removing constraints may potentially

add huge over-approximation errors (see Figure 6.13a). To overcome this, we
can improve the result by adjusting the neighboring constraints around the
constraint that is to be dropped. Note that this approach requires knowledge of
the topological structure of the constraints as well as the vertices of PH. After
removal of the half-space hi, all neighboring half-spaces Hneigh(hi) need to be
adjusted, where

Hneigh(hi) =
{

hj

∣∣∣ ∃v ∈ vertices(P). v ∈ hi ∧ v ∈ hj ∧ i 6= j
}

.

Intuitively, a half-space hj is a neighbor of hi if at least one of the vertices v of
PH is the solution to the linear equation system A · v = b where the rows of
A contain the normal vectors of hi and hj, i.e., v is a point in both bounding
hyperplanes h̄i : ni · v = ci and h̄j : nj · v = cj. To reduce over-approximation
errors, smoothing may be applied in which the normal vectors of the neighboring
half-spaces hj ∈ Hneigh are updated to

h′j =
nj + ni

2
· x ≤ c′j

such that the new normal vector n′
j is averaged over ni and nj. To ensure correct

over-approximation of Set(PH), the offset of the new half-space h′j is chosen
such that all original vertices of PH are still contained in P′

H (see Figure 6.13b).
While this method is relatively simple, the selection of the constraints which

will be removed is more involved, as the introduced over-approximation error
should be kept as low as possible. One idea for a heuristics is based on the
normal fan N (PH) of PH (see Figure 6.14a). For now, let us assume all normal
vectors of half-spaces defining PH are normalized, i.e., ‖n‖2 = 1 and PH is
non-redundant. In this setup, the selection of a half-space to remove can be
made by only considering the normal vectors n of the half-spaces and neglecting
the offsets. The analysis of N (P), more specifically the distribution of normal
vectors of the half-spaces defining P can serve as a heuristic for selecting planes
for removal (see Figure 6.14b and Figure 6.14c). Informally, a suitable normal
vector n for removal can be chosen based on its similarity to its neighbors n′,
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a) The polytope P. b) The normal fan N (P). c) Reduction.

Figure 6.14: Idea of a selection heuristics for the removal of half-spaces defining
a polytope PH to reduce its representation complexity. The shaded area in
Figure 6.14b (light petrol) highlights normal vectors of half-spaces suitable for
removal.

i.e., by finding a normal vector n such that 〈n, n′〉 is large. Note that smoothing
the resulting object is not always beneficial, as it might introduce additional
over-approximation errors instead (see Figure 6.13c).

A different way of reducing the representation complexity of a polytope is
realized by union-reduction. Assume a convex polytope PH in H-representa-
tion defined by the intersection of finitely many half-spaces hi, i = 0, . . . , n − 1.
Union-reduction attempts to replace a finite subset hj, . . . , hk, 0 ≤ j ≤ k ≤ n − 1
of the constraints defining PH by a single new constraint h′ such that

P′
H =

 ⋂
0≤i<j∪k<i≤n−1

hi

 ⊇ P

holds (see Figure 6.15a). The normal vector n′ of h′ can be computed in several
ways. Taking the average of the normalized normal vectors of the half-spaces in
H is one option to obtain a suitable n′. Computing the offset c′ of h′ requires
knowledge of the vertices of PH—again we need to ensure over-approximation.
As the vertices of PH need to be known to compute c′, we can construct n′

in a different way. The set Vhor defines the set of vertices vi which define the
boundary/horizon of the set of half-spaces H considered for reduction

Vhor =
{

v
∣∣∣ ∃h ∈ H. ∃h′ 6∈ H. v ∈ h̄ ∧ v ∈ h̄′

}
.

Intuitively, Vhor contains all vertices of P which are defined by the intersection
of at least one bounding hyperplane of a half-space in H and one bounding
hyperplane of a half-space h′ defining P, which is not to be removed. Each
d-permutation of Vhor, i.e., each subset of size d of Vhor defines a hyperplane h̄
spanned by those d vertices of Vhor. We can use the average of either all or a
reasonably-sized subset of normal vectors of those hyperplanes to obtain the
normal vector n′ of the new hyperplane. Again, the offset c′ is computed to
contain all original vertices of PH.
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vi

vjn′

a) Reduction by over-approximating two
half-spaces by a single one. The new
normal is created from the vertices vi
and vj.

b) Reduction by using a fixed uniform
hexagonal template.

Figure 6.15: Different effects of shape reduction of a polytope in H-represen-
tation via union-reduction of half-spaces or template-based reduction. The
introduced over-approximation errors are depicted in lighter petrol.

The last method, template-based reduction uses a template in combination
with linear programming to reduce PH. The general idea relies on having a
predefined template, i.e., a set D = {d0, . . . , dn−1}, di ∈ Rd of vectors. An
over-approximation P′ ⊇ P is computed using linear programming

P′
H =

{
x
∣∣ ∀di ∈ D. di · x ≤ ρPH (di)

}
.

Intuitively, an over-approximation for P is obtained by computing the supporting
hyperplanes of P based on a fixed set D or sampling directions (see Figure 6.15b).

While the first two approaches aim at a local reduction of a given polytope P,
template-based reduction provides a more general approach. Local modifications
require heuristics to choose half-spaces which will be subject to reduction. In
contrast to this, the advantage of template-based reduction lies in its generality,
i.e., not requiring any heuristics for reduction. Furthermore, the result for the
first two approaches is not known a priori, and the choice of a suitable approach
again requires heuristics. During the analysis, we use template-based reduction
methods for convex polytopes.

As a final remark, all reduction techniques need to be triggered explicitly, as
we did not yet implement any metrics on when reduction should be applied. One
idea of a possible metric is based on the idea of zonotope order (see Section 6.5),
in which the complexity of an object is given as a ratio between state space
dimension d and the number of generators. The generators of a zonotope Z are
given as vectors gi ∈ Rd which allow to define Z. We can use a similar idea for
a metric o for the order of a convex polytope PH:

o =
|PH |

d

i.e., the ratio of half-spaces to the state space dimension. Similarly, to estimate
the complexity of polytopes in V-representation, we can choose

o =
|VP|

d
.
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y

x

Figure 6.16: Polytopal approximation of a support function.

6.4 Support Functions

Support functions have recently been used extensively in hybrid systems reach-
ability analysis [LG10; FLD+11; FKL13] and thus underwent an extensive
development process. Support functions belong to the symbolic state set repre-
sentations where the support ρS(l) of a compact convex set S in the direction
vector l ∈ Rd is defined as

ρS(l) = sup
s∈S

(lT · s).

Intuitively, the support ρS(l) of S allows to define a half-space h with normal
vector n = l and the offset c = ρS(l), where c is chosen such that h̄ ={

x ∈ Rd ∣∣ nT · x = c
}

is a supporting hyperplane of S in direction l, i.e., contains
a face of S (see Figure 6.16).

In HyPro, the state set representation for the underlying set S may be for
instance

• a ball B of radius r : ρB(l) =
|l|
r ,

• a box B = (I0, . . . , Id−1) (see Section 6.2), or

• a polytope in either H-representation or V-representation (see Section 6.3),
or

• an ellipsoid E where ρE(l) = 〈l, q〉+
√

lTQl (see Section 6.6).

The effort of computing the support of a set thus heavily depends on its
representation—while the support for a ball can be computed in constant time,
the support for a box requires linear effort (see Section 6.2) and for a convex
polytope a linear program has to be solved, which can (theoretically) be done
in polynomial time.
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Operations

As noted for instance in [LG10] the required operations for flowpipe-construc-
tion-based reachability analysis on a given support function ρA of a set A can
be computed efficiently:

union ρA∪B(l) = max(ρA(l), ρB(l))

intersection ρA∩B(l) = min(ρA(l), ρB(l))

linear transformation ρA·A(l) = ρA(AT · l)

Minkowski sum ρA⊕B(l) = ρA(l) + ρB(l)

Once a state set A ⊆ Rd has been instantiated, in HyPro all operations on
it are effectively stored in a tree-like structure, the operation tree where each
concrete set Ai is a leaf node. During the analysis, this tree will grow and
branch depending on the operations performed. Predecessor nodes are added to
the root node, which reflects the result of the applied operation. The support of
the current set represented by the root node of the operation tree for a direction
l can be computed recursively by traversing said operation tree: operations
such as linear transformations modify the requested direction l and forward
the request to their child node while binary operations such as intersection or
Minkowski sum will return an aggregation of the results obtained by recursive
calls (see Figure 6.20).

Example 6.3: Support Function Operations

Consider the method of computing the first segment, as presented in
Section 3.4. The operation tree of a support function for this first
segment looks as follows:

∪

I ⊕

BeδA

I

where I denotes the passed initial set and A is the matrix describing the
flow in the current location.

Note that in theory, we consider recursive operation-tree traversal while
in practice we traverse the operation tree in an iterative fashion to avoid the
overhead on the stack introduced by recursive calls as the operation tree can
quickly outgrow hundreds of nodes during analysis.
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Figure 6.17: Linear
transformation of a sup-
port function.
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Figure 6.18: Intersec-
tion of two support func-
tions.
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Figure 6.19: Minkowski
sum of two support
functions.

Figure 6.20: Operations on support functions can be stored in a tree-like
data structure. Note that union of support function works analogously to the
Minkowski sum but result aggregation from the sub-trees works differently (see
Section 6.4).

Union

As stated above, the union of two support functions can be modeled as a
binary operation combining two operation trees. Sampling the support for the
unified state set results in sampling both sub-trees individually and taking the
maximum support value, i.e., computing the supporting hyperplane including
both sets (see Figure 6.21). As the trees are sampled sequentially, further
sampling can be avoided in case it can be determined that the result in one
subtree is unbounded.

Intersection

A simple implementation of the intersection of two support functions ρA and
ρB can be computed similarly to the union operation by sampling all subtrees
and collecting the results ρA(l) and ρB(l) for a specific direction l. A valid
over-approximation of ρA∩B for l is given as

ρA∩B(l) = min {ρA(l), ρB(l)} .

This approach is implemented in HyPro, however there are more sophisticated
approaches [LG10; FR12], as this method may result in coarse over-approxima-
tions.

Intersection with a Half-space

The intersection of a support function ρS of a set S ⊆ Rd and a half-space
h =

{
x
∣∣ nT · x ≤ c

}
may be modeled by considering h as a polytope with

only one constraint and using a fall-back to the regular implementation of
support function intersection and the corresponding methods to compute the
support for the resulting set. Note that computing the support of a single
half-space in direction l results in +∞ as a support value for all choices of l
unless l = λ · n, λ ∈ R>0 which can be exploited to speed up operation tree
traversal.
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l

l

a) Computing the support of two sets
in direction l by returning the support-
ing hyperplane with the largest support
value.

b) Computing the support of the union of
two support functions in infinitely many
directions will return the supporting hy-
perplanes of the convex hull of the two
sets.

Figure 6.21: Computing the support of the union of two support functions
returns the maximal support value under all sets that are unified.

Affine Transformation

Computing an affine transformation ρ′S = A · ρS + b of a support function ρS
of a d-dimensional set S adds a single node as a parent to the current node in
the operation tree as an unary operation. In a basic setup, the node stores the
transformation parameters, i.e., the matrix A ∈ Rd×d and the vector b ∈ Rd.
During the sampling of ρS, i.e., computing the support for a given direction
l, l is transformed to l′ = AT · l (see Figure 6.17). Intuitively, instead of
computing the support for a set ρ′S(l) = (A · ρS)(l) = ρS(AT · l), the direction
l is transformed to return the same result but without modifying the original
set. An intuition is depicted in Figure 6.22, where instead of transforming a set
S and then computing the support towards a direction l, the support of S for a
modified direction l′ is computed which returns the same result.

Computing the Support

While all operations on support functions correspond to insertions in the opera-
tion tree, in essence just performing those operations can be done in constant
time. Computing the support of a set, which is the central operation required
for support functions is the most costly operation. In general, computing
the support of a given support function requires to traverse its operation tree
recursively. Thus, the computational effort required depends on the number
of nodes in the search tree and especially on the number of leaf-nodes. While
all non-leaf-nodes in the search tree do not require much computational effort
during the tree traversal, in all leaf-nodes the support of a particular state set
in its specific representation has to be computed. Consequently, the state set
representation for leaf-nodes strongly influences the running time of a flow-
pipe-construction-based reachability analysis method in which computing the
support of a set is an essential operation.

Even though in theory the traversal of the operation tree can be done
recursively, during experiments the increasing depth of the search tree and thus
the increased number of recursive function calls uses a large amount of memory
on the stack. To overcome this, we have implemented a generalized scheme
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S S′·A
l

l′

Figure 6.22: Intuition behind computing the support for a linearly transformed
set: instead of transforming S and computing its support towards l, the support
of S in direction l′ is computed which allows to avoid potentially expensive
transformations to S′.

that turns the recursive sampling calls for each node into an iterative approach.
The basic idea of this algorithm follows a classical approach to mimic stacks of
recursive calls. We maintain three stacks, one for the parameters; one to keep
track of the recursive function calls; one for the return values. Depending on
the type of node and the traversal direction, parameters are transformed and
recursive calls simulated, or results are aggregated and passed to the calling
frame. Transformation of parameters and aggregation of the results depends
on the called function—a generalized implementation which we are working on
uses placeholders for those functions which are instantiated depending on the
type of operation.

Operation Tree Reduction

As the size of the operation tree stored for a set S represented by a support
function increases with every operation, methods to reduce the search tree have
been developed. In the following, we will present our ideas on operation tree
reduction as implemented in HyPro.

Linear Transformation Reduction. The results presented in this section are
based on results obtained in the Master’s thesis of Phillip Florian [Flo16]. In
flowpipe-construction-based reachability analysis for linear hybrid systems, after
having computed the first flowpipe segment, the next segments are obtained by
repeated linear transformation (see Section 3.4) with the same matrix A ∈ Rd×d.
To reduce storage, we do not store A in each operation, but rather provide a
container holding A.

For each set, containment in the invariant, intersection with the set of
bad states and enabledness of transitions have to be checked by applying an
intersection operation with the respective state set. Provided these tests are
performed directly, and intersection operations only added to the operation tree
in case the intersection modifies the current state set and otherwise are left out,
in many cases we can obtain sequences of linear transformation operations only
as shown in Figure 6.23.

These sequences provide a convenient way to reduce the length of paths in the
operation tree of a support function object. Sequences of n linear transformations
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ρS0 ρS1 ρS2 ρS3 ρS4

parameters A1 A2 A4 . . .

·A·A·A·A

·A2

·A4

Figure 6.23: Reduction of the operation tree of a sequence of linear transforma-
tions of a support function using a base of 2. The actual parameters are stored
in a shared parameter container to avoid duplicates.

with the same matrix A can be converted to one transformation using An.
While this reduces the path length effectively to one in any case, it involves an
additional matrix multiplication for each new transformation n + 1 to obtain
An+1, i.e., A6 = ((((A · A) · A) · A) · A) · A. An extension of the parameter
container to provide and compute powers of the initial matrix A effectively
reduces the number of matrix multiplications, as powers of matrices can be
computed effectively using fewer multiplications. When reusing parameters, the
number of required multiplications to compute for instance A6 can be reduced
to

A6 = ((A · A)︸ ︷︷ ︸
A2

·A)

︸ ︷︷ ︸
A3

·((A · A) · A) = ((A · A) · A) · A3

which uses only three matrix multiplications as results from the left side (A · A
and ((A · A) · A)) can be reused in comparison to five multiplications using
the naive approach. We generalize the above approach by specifying a basis
b of which powers will be stored and reused. The above example when using
b = 2 collapses to

A6 = ((A · A)︸ ︷︷ ︸
A2

·(A2))

︸ ︷︷ ︸
A4

·(A2).

In general, a chain of length n of consecutive linear transformations using the
same matrix can be reduced to length logb(n) where b denotes the base of the
reduction. In the above case b = 2, i.e., the length of the chain is equal to the
number of ones in the bit-representation of the exponent n, while we can also
choose less-aggressive reductions by setting b to higher values.

Different chain lengths with relation to the basis are depicted in Figure 6.24.
The plot relates the targeted exponent and the actual chain length for different
choices of base b. In the plot, we can see that reduction allows us to keep the
chain length in the search tree small even for high exponents.

The total number of multiplications m required including computing all
intermediate matrices for basis b can be computed in the following way: Let
[n]b be the representation of n using the basis b and let [n]b(i) be the digit of
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Figure 6.24: Transformation chain length depending on the reduction base. The
plot shows the resulting chain length over the number of transformations up to
500 transformations.

[n]b at the i-th position (from highest to lowest) and |[n]b| refers to the total
number of digits in [n]b with [n]b 6= 0. Then it holds that

m = |[n]b|︸ ︷︷ ︸
base

+ [n]b(0)− 1 +
|[n]b |−1

∑
i=1

[n]b(i)︸ ︷︷ ︸
rest

.

The first part base refers to the number of multiplications required to compute
the highest-valued digit in the representation of n in base-b, i.e., to compute all
required intermediate matrices. The second part rest accounts for the number of
multiplications using the previously computed matrices. Note that we subtract
one as the computation of the highest-valued digit has been covered once in
the first part already.

Example 6.4: Support Function Chain Reduction

If we want to compute A3142 using a basis b = 2, the total required
number of multiplications can be computed as follows:

[3142]2 = 110001000110 .
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The highest non-zero exponent [3142]2(0) equals to 2048, i.e., 211, which
requires 11 multiplications to compute

A2048 = ((A · A)︸ ︷︷ ︸
A2

·A2)

︸ ︷︷ ︸
A4

·A4 . . . · A1024 .

Once we have all intermediate matrices, we need to account for the
non-zero digits which adds another four multiplications totaling in 15
required matrix-matrix multiplications to compute A3142 and results in
a chain of length five.
If we choose b = 4, we obtain

[3142]4 = 301012

which thus results in a chain of length seven but requires only six
multiplications for the highest-valued digit.

Different bases provide an approach to reduce the required number of
multiplications for the computation of the highest-valued digit at the cost
of a longer chain. At first, this might result in fewer multiplications (see
Example 6.4); however, in general, shorter chains are favorable. During flowpipe
construction for a linear hybrid system, consecutive segments are related by
a single linear transformation. Thus, a chain of transformations is built up
during construction iteratively, which implies that the cost for the base case
(base) is limited to at most one multiplication, in case a new matrix-power is
required. Additionally, various samplings of a support function occur during
computation, in which the length of a chain plays an essential role concerning
the running times.

Note that this provides a method to reduce the operation tree depth on
the fly during computation, as the links between the operation nodes can be
updated upon request. A pseudo-code version of the reduction mechanism of
the operation tree implemented in HyPro is shown in Algorithm 5.

Upon construction of a new node for a linear/affine transformation in the
operation tree, chains of length 2b where b is the chosen base are detected and
iteratively collapsed. Each transformation node stores its exponent, which is
also updated whenever a part of the chain is collapsed.

Tree Reset. Even though we provide methods to reduce the operation tree
of a support function during computation as much as possible, e.g., collapsing
linear transformations or removing intersection operations which do not affect
the object, eventually the size of the operation tree will become too large. Large
operation trees do not only require large amounts of storage but also have a
strong influence on the running times when computing the support of a set S,
as the whole operation tree has to be traversed.

To obtain an operation tree with a single node, we can compute an over-ap-
proximation of the current set S by using template-based evaluation i.e., we try
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Algorithm 5: Chain reduction for linear transformations of support
functions invoked whenever a new linear transformation is added to
the operation tree.

Input: Operation tree root n, transformation matrix A, base b

child := n // set child node
exp := 1 // set current exponent
if n is a linear transformation operation then

reduced := false
repeat

/* get number of consecutive linear transformations using exp.
*/

tCount := getTrafosWithExp(exp,n)
if tCount = 2b then

exp = exp·2b // update exponent
/* new child node: skip 2b − 1 nodes in chain */
child = updateChild(2b − 1) reduced = true

until reduced=false
else

createParContainer(A) // initialize param. container

to obtain a polyhedral approximation of S based on a template and use it as a
fresh leaf node in the operation tree. A template T is a set of d-dimensional
vectors t ∈ T. Using each vector t as a normal vector for a hyperplane, we can
obtain a convex polytope SH in H-representation by computing the support of
S for each t ∈ T:

Set(SH) =
{

x
∣∣∣ ∀t ∈ T. tT · x ≤ ρS(t)

}
.

As we have to traverse the whole operation tree to obtain the offset for each
supporting hyperplane, the number of vectors in T influences the computational
cost of this reduction. On the other hand, having more vectors in T generally
increases the precision of the approximation. The actual shape of S usually is
not known, and the exact set S can be obtained only by sampling all vectors
in Rd. While this is in general not possible, it is common to use uniformly
distributed vectors, e.g., an octagonal template over all pairs of dimensions
i, j ∈ {0, . . . , d − 1}, i 6= j

T =
{

t ∈ Rd
∣∣∣ ∃0 ≤ i, j < d. i 6= j ∧ ti ∈ {−1, 1} ∧ tj ∈ {−1, 0, 1}∧

(∀0 ≤ k < d. (k 6= i ∧ k 6= j) ⇒ tk = 0)
}

.

In general, other templates are possible as well, for instance using only two
directions per dimension

T =
{

t ∈ Rd
∣∣∣ tk = 0, ti ∈ {−1, 1}, i 6= k

}
,

i.e., a box-template allows to use a box as a leaf node, which provides more
efficient methods to compute the support (see Section 6.2) at the cost of reduced
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precision. In our implementation, we provide methods to syntactically detect
whether a leaf node S of a support function object is box-shaped, i.e., whether
the set of half-spaces describing S conform to a template with four directions
as described above.

Experimental Results

In this section we will present selected experimental results from testing our
implementation of support functions. All results were run on a machine with
4 × 4 GHz Intel Core i7 CPUs and a memory limit of 8 GiB. To benchmark
operations on support functions, we consider two basic setups: one where just
the operation is applied and a second one where a variety of samples is requested
after the operation. The reason for this is that in general support functions
only store an operation tree, i.e., only the sequence of applied operations. Thus,
performing single operations is usually very fast, unless post-processing slows
down the process. In contrast to this, requesting a sample for a given support
function reveals the actual running time of the whole operation as the complete
operation tree has to be traversed. To account for this, the second setup, which
includes sampling the support function measures, not only the time to apply the
operation is measured, but the total time to obtain the supporting hyperplane
for the resulting support function as well.

Affine Transformation. Our implementation of affine and linear transforma-
tion features reduction of chains of consecutive applications of the same transfor-
mation. To benchmark applying an affine transformation to a support function,
we use the following setup in which we consider chains of transformations of
different lengths. Furthermore, to indicate the impact of our optimizations we
consider different numbers of sampling-requests afterwards. The reason for this
is that while in a very basic setup the application of a transformation itself
(without sampling) is expected to be constant, i.e., only the cost for storing
the operation parameters, our optimizations introduce costs for reduction and
post-processing. However, we expect that these optimizations pay off in terms of
running time with increased requests for sampling. We consider three different
setups: A basic setup (basic) representing a straight-forward implementation
in which each operation is stored along with its parameters in the operation tree;
a setup (redI) in which a set of parameters is only stored once and shared each
time it is used; a setup (redII) in which chains of consecutive transformations
are reduced according to Section 6.4. While the setup basic does not add any
additional post-processing cost in terms of running time it comes at an increased
storage usage. Setup redI overcomes this by searching the already existing
operation tree for the same set of parameters and uses them as a reference to
reduce storage. Traversing the tree and comparison of parameters however adds
additional running time. The third setup redII additionally tries to collect
chains of consecutive transformations as presented in Section 6.4, which comes
at an additional cost of reducing the operation tree. We expect that while
setups redI and redII come at higher fixed costs when applying the operation,
the cost of sampling can be reduced drastically using these approaches.
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Figure 6.25: Running times obtained with different number of affine trans-
formations and different number of samplings of a support function using
chain reduction (redII) as presented in Section 6.4 with a base of two in a
one-dimensional state space.

A plot relating the number of affine transformations in combination with
different number of samplings using chain reduction with the running times can
be seen in Figure 6.25. The results of Figure 6.25 were obtained for computations
in a one-dimensional state space and the running times represent averages of
1000 repetitions of the respective setup. We chose a one-dimensional state space
to be able to depict and analyze the effects of chain reduction only and minimize
other influences such as caching as much as possible. Results from configurations
with a higher-dimensional state space are shown later. Figure 6.26 shows the
running times of the same setup but without chain reduction. From both plots,
we can observe that the running times increase linearly with the increase of
the number of samplings, which matches our expectations. Furthermore, a
cross-section in Figure 6.25 for a fixed number of evaluations shows a similar
structure as in Figure 6.24 and shows the strong relation between chain length
and running time. The total speed-up by using chain reduction in comparison
to the original method is depicted in Figure 6.27. The running times for this
plot were obtained using a 100-dimensional state space. We can observe that
for a small number of samplings the speed-up is below one, i.e., only for a
reasonably large number of samplings the method pays off. Similar to the other
plots, a cross-section in the speed-up vs. transformations plane resembles the
structure as presented in Figure 6.24.
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Figure 6.26: Running times obtained with different number of affine transfor-
mations and different number of samplings of a support function without chain
reduction (basic). The underlying state space was one-dimensional.

Sampling. Sampling a support function itself highly depends on the operation
tree but also on the set representation at the leaf-node of the operation tree. In
this paragraph, we will discuss the sampling process of a leaf-node itself. Apart
from representation types such as a ball (in some norm), we consider convex
polytopes in H-representation as a possible leaf-node. In general, the sampling
of a polytope is equivalent to linear programming; in special cases we can speed
up the process, e.g., when the polytope is a box (see Section 6.4).

Note that for all examples of hybrid systems we are aware of, the initial set
is represented as a box, i.e., in any case improved sampling using boxes can
be used on the first flowpipe. Furthermore, if operation tree reduction with
a uniform template in four directions is used (see Section 6.4) the resulting
polyhedral approximation is a box—using this approach we can significantly
reduce running times. The effects on running times are similar to the effects
observed for computing the support of a box (see Section 6.2), which is why we
will not repeat the results here for single operations. Instead Table 6.2 shows
the cumulative effects using this approach in a flowpipe-construction-based
reachability analysis implementation on a selection of benchmarks from our
collection. We consider three settings for support functions: (i) no detection
of boxes (plain), (ii) detection of boxes (detect), and (iii) detection and
reduction of and to boxes after discrete jumps (reduce). When using the
setting detect, during the analysis sets which are box-shaped will be treated
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Figure 6.27: Speed-up comparing no chain reduction (basic) to running times
obtained when using chain reduction techniques (redII) in a 100-dimensional
state space.

Table 6.2: Running times in seconds for different support function sampling
methods during flowpipe-construction-based reachability analysis. All bench-
marks were run using a time step size δ = 0.001 and full aggregation. We
compare three settings: no optimization (plain), detection of box-shaped sets
(detect), and reduction to boxes (reduce).

Model plain detect reduce

Ball 0.49 0.46 0.34
Sw5 0.38 0.37 0.13
2Tnk’ 0.32 0.59 0.85
Pltn 26.13 25.62 1.12
Bld 8.12 2.21 2.23

as boxes. In addition, when using the setting reduce, state sets will be reduced
(template-based) to boxes after taking discrete jumps such that initial sets for
new flowpipes are always box-shaped. The setting plain omits all of these
optimizations and treats all sets which can be represented as a finite intersection
of half-spaces as convex polytopes. All benchmarks were run using the same
time step size δ = 0.001 and full aggregation of sets satisfying a guard condition.

In general, detecting whether an initial set is box-shaped (detect) and
in this case using a box representation already improves running times. As
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Figure 6.28: Comparison of precision using different reduction techniques for
support functions. The plot shows both filling levels of a variant of the two tanks
system computed using δ = 0.001 and full aggregation. The approximation
using the setting without box-reduction (plain) is depicted in petrol, the results
when using box-reduction (reduce) are depicted in light petrol.

usually only the initial set of the first flowpipe is box-shaped, the box-detection
approach only affects the computations of the first flowpipe-approximation. The
building benchmark (Bld) which is a purely continuous system thus profits from
this setting, as only one flowpipe is over-approximated. For all other problem
instances the effect of a decreased running time is observable, however not
significant, as further flowpipe computations cannot profit from this approach.

The running times improve considerably, if not only box-shaped initial sets
are detected, but if also support function objects after a discrete jump are
reduced (reduce) by using a box-shaped approximation instead of a polytopal
approximation based on an octagonal template. Note that this setting may
reduce the precision of the approximation, as the polytopal approximation using
a box-template usually is less precise than using an octagonal template (see
Figure 6.28). As a consequence of the loss of precision, it may happen that
more flowpipe segments need to be computed, which results in longer running
times, but also reflects in the plotted over-approximation of the set of reachable
states, e.g., for a variant of the two tanks system (2Tnk’)2.

Flowpipe approximations by support functions using reduction to boxes
show improved running times, if the number of segments increases only by little,
as the sampling of sets now is faster. Using detection of box-shaped initial sets
in combination with reduction to boxes, we can observe improvements of up
to 95 % (Pltn) in running times. The building system, which only requires
approximation of one flowpipe consequently does not exhibit improved running
times using this setting.

2This is the version without a PLC-controller attached.
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6.5 Zonotopes

Zonotopes have been in focus of the research community for a long time
and often are considered as a suitable state set representation, especially for
purely continuous systems [Gir05; ASB10]. In this section, we briefly introduce
zonotopes as a state set representation and highlight some of their features.
The implementation of zonotopes in HyPro has been provided by Ibtissem
Ben Makhlouf and is taken from her tool HyReach [BHK16]. Approaches
implemented are mainly based on [ABC05; Gir05; GL08].

Definition 6.4: Zonotope

A d-dimensional zonotope representation is a tuple AZ =
(c, g0, . . . , gn−1) with a center c ∈ Rd and a (possibly empty) sequence
g0, . . . , gn−1 of vectors from Rd called generators. AZ represents the set

AZ =

{
c +

n−1

∑
i=0

λi · gi

∣∣∣∣∣ λi ∈ [−1, 1] ⊆ Rd

}

and we use |AZ| to denote the number n of generators used to represent
AZ .

We use the vector notation for a zonotope Z = (c, g0, . . . , gn−1) where the
first element always refers to the center and the remaining elements represent
the generators. Intuitively, a zonotope is a convex polytope which is point-
symmetric to the center c and it is spanned by the Minkowski sum of a finite
set of line segments li = λi · gi, λi ∈ [−1, 1]. From another point of view, a
d-dimensional zonotope with n ≥ d generators can be seen as the projection of
an n-dimensional box on a d-dimensional space (see for example Figure 6.29b).
The more generators a certain zonotope has while the state space dimension
remains fixed, the more complex the object gets and the less information per
generator is added. Informally, the object becomes more and more “round” with
an increased number of generators. The zonotope order |Z|

d relates the dimension
of the ambient space and the number of generators in a zonotope Z to each other
and provides a convenient metric for the complexity of Z. Several reduction
techniques have been developed to keep the order and thus the representation
size within certain bounds during computation [Gir05; ASB10]. After a short
overview of the implementation of operations on zonotopes, in Section 6.5 we
will present two order reduction techniques implemented in HyPro; one of
them which was provided by Ibtissem Ben Makhlouf while we added the other
one.

Operations

In this section, we present the general idea and methods to perform the most com-
monly used operations required during flowpipe-construction-based reachability
analysis when using zonotopes as a state set representation. In the following, as-
sume two d-dimensional zonotope representations AZ = (ca, a0, . . . , an−1) , BZ =
(cb, b0, . . . , bm−1).
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Figure 6.29: Two-dimensional zonotopes spanned by different sets of generators.

Union

The convex hull of the union of AZ and BZ can be over-approximated by the
zonotope

cl(AZ ∪ BZ) =

(
ca + cb

2
,

a0 + b0

2
, . . . ,

an−1 + bn−1

2
,

cb − ca

2
,

a0 − b0

2
, . . . ,

an−1 − bn−1

2

)
assuming n = m. If this is not the case, the additional generators are added to
the result. This approach has been presented in [Gir05] and provides a rough,
yet simple method to over-approximate cl(AZ ∩ BZ).

Intersection

Zonotopes are not closed under intersection which renders intersection op-
erations (both, zonotope-zonotope and zonotope-half-space) a difficult task.
The difficulty lies in constructing a small zonotope that contains the result.
In HyPro, several methods [ABC05; Gir05] have been implemented for the
zonotope-zonotope intersection as well as the zonotope-half-space intersection,
which can be chosen by the user.

Minkowski Sum

Zonotopes specify a set of points by the Minkowski sum of a finite set of line
segments (see Definition 6.4). Consequently, zonotopes are closed under the
Minkowski sum. Thus, the Minkowski sum of two zonotopes representations
AZ and BZ can be computed as

A⊕ B = (ca + cb, a0, . . . , an−1, b0, . . . , bm−1) .

In essence, the Minkowski sum of two zonotopes can be computed by unifying
the sets of generators and updating the center of the resulting zonotope.
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Affine Transformation

Computing the result of applying a linear map A ∈ Rd×d on a d-dimensional
zonotope representation ZZ = (c, z0, . . . , zn−1) is reflected in applying A on its
generators and the center individually

A · ZZ = (A · c,A · z0, . . . ,A · zn−1) .

The extension towards an affine transformation, i.e., adding a translation by a
vector b ∈ Rd can simply be computed by adding the translation to the center
point

A · ZZ + b = (A · c + b,A · z0, . . . ,A · zn−1) .

Computing the Support

The support for a zonotope ZZ = (c, z0, . . . , zn−1) for a direction l ∈ Rd can be
computed component-wise by projecting l on each generator zi and the center
c to obtain

ρZZ (l) = |〈l, c〉|+
n−1

∑
i=0

|〈l, zi〉| .

Computing the Vertices

Especially for conversion methods, it is sometimes required to compute the
vertices of a bounded set A whose convex hull defines A. For a zonotope
representation AZ of A where Set(AZ) ⊇ A, we provide a recursive method
in HyPro which is based on the iterative construction of a zonotope AZ =
(c, a0, . . . , an−1) with n generators as shown in Algorithm 6.

Order Reduction

In this section, we briefly present the ideas towards zonotope order reduction
which have been implemented in HyPro. As a reminder, the order p = |ZZ |

d of a
d-dimensional zonotope ZZ reflects the relative complexity of the set represented.
As operations such as the Minkowski sum of two zonotopes increase the order
of the resulting polytope, reduction of the representation at the cost of over-ap-
proximation is performed in case the zonotope order exceeds a given bound.

The first method implemented in HyPro was first presented in [Gir05]. The
general idea is to replace 2d generators of a d-dimensional zonotope ZZ by d
generators. To achieve this, the interval hull B of the 2d selected generators
is computed by computing the sum of the absolute values of the generators
component-wise. Afterwards those 2d generators can be replaced by d generators
defining B.

A second approach is based on conversion methods for zonotopes in HyPro.
The idea of this approach is to use a principal component analysis (PCA) of the
vertices of a given zonotope Z to obtain an oriented rectangular hull Z′ which
contains Z. As rectangular hulls are a subclass of zonotopes, this approach
provides a simple method to significantly reduce the number of generators
in Z to d generators. We provide a detailed description of the approach in
Section 6.8.
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Algorithm 6: Recursive construction of vertices(AZ) of a zonotope
AZ.

Input: A zonotope representation AZ = (c, a0, . . . , an−1)
Output: The set of vertices V of AZ

Function vertices(AZ)
cur = c
if |AZ| 6= 0 then

pos := cur + a0 // add positive generator
neg := cur − a0 // add negative generator
/* recursive calls with one generator less */
if |AZ| > 1 then

vPos := vertices((pos, a1, . . . , an−1))
vNeg := vertices((neg, a1, . . . , an−1))
V := vPos ∪ vNeg

else
V := {pos, neg}

else
V := {cur}

return V

6.6 Further State Set Representations

Here, we shortly present other state set representations which can also be
used for flowpipe-construction-based reachability analysis but which are only
partially implemented in HyPro.

Taylor Models

Taylor models as a symbolic representation for state sets have shown great
potential for the analysis of non-linear hybrid systems [CÁS12; CÁS13], for
an exemplary illustration see Figure 6.30a. A basic implementation of Taylor
model arithmetic as implemented in Flow* [CÁS13] is shipped with HyPro.
As reachability analysis for hybrid systems based on Taylor models has been
successfully implemented in Flow*, the focus of our work on HyPro lies on
state set representations for linear hybrid systems reachability analysis.

Orthogonal Polyhedra

HyPro offers a basic implementation of orthogonal polyhedra, which have been
used in the early years of flowpipe-construction-based reachability analysis for
hybrid systems [Dan00]. The advantage of orthogonal polyhedra lies in their
capability of representing non-convex sets by a union of hyper-rectangles aligned
on a non-uniform grid (see Figure 6.30b). Basic operations such as intersection or
union on orthogonal polyhedra are implemented in HyPro, however, operations
such as linear transformation and Minkowski sum are missing as the former
requires to introduce heuristics to determine the resolution of the underlying
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Figure 6.30: Illustration of other state set representations which are partially
implemented in HyPro.

grid to represent non-axis-aligned constraints and for the latter non-convexity
of the state sets renders an efficient implementation difficult. Consequently,
the implementation of orthogonal polyhedra does not conform to the general
interface, which renders them not usable in our generalized algorithm at the
moment.

Ellipsoids

Ellipsoids have been also used as a state set representation for flowpipe-con-
struction-based reachability analysis to represent state sets [KV00; KV07]. In
recent tools, ellipsoids are rarely considered, as they are not closed under most
operations such as intersection, union, or Minkowski sum.

The d-dimensional ellipsoid representation AE = (c,Q) represents the set

Set(AE) =

{
x ∈ Rd

∣∣∣∣ ∀l ∈ Rd. 〈l, x〉 ≤ 〈l, c〉+
√
〈l,Q〉

}
where c denotes the center of the ellipsoid and Q ∈ Rd×d is a positive semi-
definite matrix referred to as a shape matrix. Intuitively, an AE is a ball centered
at c, which is linear transformed using a matrix Q (see Figure 6.30c).

Ellipsoids are closed under linear and affine transformations. Furthermore,
the Minkowski sum of two ellipsoids can be over-approximated efficiently and
tightly for a given direction l ∈ Rd [KV07].

In HyPro, we provide an implementation of ellipsoids with an interface for
linear and affine transformation as well as the Minkowski sum. In the context
of the Master’s thesis of Phillip Florian [Flo16], we have tested ellipsoids
as a state set representation for computing the influence of external input
during flowpipe-construction-based reachability analysis based on the method
presented in [Le 09]. In this approach, the computation of external input for
non-autonomous linear hybrid systems is decomposed into computing flowpipe
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segments for the set of reachable states of the autonomous part (as presented
in Section 3.4) and the computation of the influence of the external input. The
later computation requires alternating sequences of Minkowski sum operations
and linear transformations of state sets for which ellipsoids are well-suited.

6.7 General Optimizations

In this section, we will highlight general features implemented in HyPro which
are relevant for implementing a flowpipe-construction-based reachability analysis
method.

Linear Optimization and Numerical Precision

Several operations on different state set representations require linear program-
ming (LP), e.g., computing the support of a convex polytope. In HyPro,
we provide a generalized linear optimization fronted which allows integrating
several different backend LP solvers. Currently supported solvers are glpk,
soplex, SMT-RAT, and Z3. HyPro allows to switch between exact and
inexact arithmetic through number representation, i.e., the user may choose
to use native C++ double numbers or rational types, for instance, the gmp
rational type mpq_class. Utilization of different number types is realized via
templates, however, adjustments are needed for exact types, e.g., methods for
the reduction of the number representation (see Section 6.3) or specialized
methods for the comparison to double numbers need to be provided. Most
linear optimization solvers require to specify the input using double numbers and
correspondingly double precision is used during computation. However, solvers
as glpk or soplex allow for both, floating-point arithmetic as well as problems
specified by rational types. Furthermore, satisfiability modulo theories (SMT)
solvers such as SMT-RAT or Z3, which also allow for optimization utilize
rational arithmetic by default and provide precise results. In HyPro, the linear
optimization frontend does not only provide wrappers for all mentioned solvers
but furthermore allows to combine their usage (see Figure 6.31). The idea is
similar to the one presented in [Mon09] in which a more precise SMT linear
real arithmetic (LRA) solver working with rational arithmetic is initialized with
a solution and the internal structure obtained by a less-precise solver using
double arithmetic.

In our work we implement a similar approach for solving linear optimization
problems maxx∈X cT · x with c ∈ Rd and the set X ⊆ Rd is given as an
intersection of a finite set of half-spaces. We use a backend for linear optimization
using floating-point arithmetic (here: glpk) to obtain an initial solution s ∈ X.
As floating-point computations are in general faster than rational arithmetic,
this enables us to initialize a second solver quickly. We can use s to create a
new constraint cT · x ≥ s and add it to X which enforces an improvement of s
by adding a new half-space to the input problem. This approach may speed
up the succeeding call to a linear optimization backend with higher precision
(here either SMT-RAT, soplex or Z3) which operates on the reduced search
space using rational arithmetic to find a solution s∗ ≥ s. As a fallback, the
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Figure 6.31: Portfolio approach for convex optimization using different backends.
In a first attempt an optimization framework using double-precision is used
(left). A second optimization framework (double lined) using rational arithmetic,
which is potentially initialized with the first solution is used to either improve
or validate the initial solution.

more precise backend is called on the initial problem if either the less precise
backend is unable to find a solution or in case the attempt to improve s renders
the problem infeasible. Both cases may occur in case the inexact optimization
framework has returned a solution s 6∈ X, which is not contained in the search
space of the original problem.

6.8 Conversion

One of the goals when providing a library of state set representations is to make
different state set representations exchangeable on demand and even during
computation with little effort. Using a common interface, which allows to use
all provided state set representations in a similar fashion is one step towards this
goal. To allow exchanging the used representation type even during reachability
analysis computation, conversion methods are required which guarantee over-ap-
proximation. HyPro provides conversion methods for all implemented state set
representations complying with the common interface. Once switching the state
set representation during the reachability analysis is possible, we can implement
more advanced approaches (see Chapters 7 and 8).

In this section, we are not going to present all conversion methods between
all state set representations in detail, but focus on the more involved ones and
will give an intuition on the remaining ones. For the interested reader, we refer
to the Bachelor’s thesis of Simon Froitzheim [Fro16], which contains detailed
information about all presented approaches which are also implemented in
HyPro.

Conversion to Polytopes

Convex polytopes as used in HyPro naturally require conversion methods
between H-representation and V-representation, i.e., methods for vertex enu-
meration (H-representation to V-representation) or facet enumeration (V-repre-
sentation to H-representation) to implement some of the required operations for
reachability analysis (see Section 6.3). Furthermore, most other state set repre-
sentations for a set S provide methods to compute either a set of vertices whose
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convex hull contains S or a set of linear constraints whose conjunction contains
S. For instance, as boxes are a subclass of convex polytopes in H-representation
the set of constraints defining a box B is given by the interval boundaries for
each dimension. As another example, the vertices of a zonotope Z can be
enumerated by a recursive algorithm (see Section 6.5) and used for conversion.
Consequently, the conversion of state set representations to a convex polytope
can be reduced to the construction of a polytope in either V-representation or
H-representation.

For facet enumeration many algorithms were developed, but only a few
extend beyond three dimensions. Two of the most well-known methods are Gra-
ham’s scan [Gra72], and an optimized version of the gift wrapping algorithm, also
known as Jarvis-March [Jar73]. These methods can be used for two-dimensional
problem instances and compute a convex hull of n points in O(n log n). Algo-
rithms implementing general methods for arbitrary dimensional spaces can be
split into two groups: constructive methods e.g., Quickhull [BDH96] and re-
versed search methods [AF92]. In HyPro, we provide several implementations:
for plotting two-dimensional polytopes, an implementation of Graham’s scan
is included. For higher-dimensional polytopes, we use an implementation of
the Quickhull algorithm to enumerate facets of a polytope in V-representation.
Currently, vertex enumeration is done by simple permutation and verification
of the results.

To provide a more comprehensive collection of algorithms, an implementation
of Avis and Fukuda’s reversed search method [AF92] is planned. As this method
can easily be adapted to solve the dual problem of vertex enumeration, we
expect a significant improvement over the current implementation. Note that
special care has to be taken when the state set in question does not span the
whole state space, for instance, Quickhull requires a full-dimensional simplex
as an initialization, i.e., the passed set of points needs to contain at least
d + 1 affinely independent points. We will present our approach to solving this
problem in the next section.

Lesser-dimensional and Degenerated Polytopes. Special care has to be taken
when working with lesser-dimensional polytopes, for instance, when trying to
represent a line segment in a 2-dimensional space by a convex polytope in
H-representation (see Figure 6.32). In HyPro, we implement two approaches:
an approach based on recursive projection and a fallback to a template-based
approach (see Section 6.8). As the conversion via template-based objects is
described below, we will provide an intuition on the method based on recursive
projection here. The method takes a set of n points P = {p0, . . . , pn−1}, pi ∈ Rd

and the task is to compute the convex hull of P in H-representation. The first
step is to determine the dimension of the space the points in P span which is
equivalent to computing the rank of the matrix A = (r0, . . . , rn−2)

T, where

rT
i = (p0 − pi+1)

are the row-vectors of A. If rank(A) = d holds, we can employ the previously
mentioned convex hull algorithms, e.g., Quickhull. Otherwise, we know that
the points in P all lie on a hyperplane h̄ =

{
x ∈ Rd ∣∣ nT · x = c

}
of dimension
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rank(A) (see Figure 6.32a). Let rank(A) = k. The idea is to recursively
project j-dimensional vertices to a (j − 1) dimensional space until we achieve a
k-dimensional vertex set. In our implementation, the choice of the dimension
for projection is guided by the coordinate range for the respective dimension—
iteratively we project out the dimension with the smallest coordinate range.

At this point, we can employ established convex hull algorithms to obtain a
k-dimensional H-representation of P (see Figure 6.32b). Recursively, each defin-
ing half-space is extended dimension-wise until a d-dimensional representation
is fully constructed (see Figure 6.32c). A pseudo-code implementation of this
algorithm can be found in Algorithm 7.

Algorithm 7: Polytope construction from a point set.
Input: Set of points P
Output: Convex polytope H containing P

Function constructPoly(P)
A := constructMatrix(P) // determine affine dimension
if rank(A) = dim(P) then

return facetEnumeration(P) // classical facet enumeration
else

h̄ := constructCommonHyperplane(P)
P′ := P ↓dim(P)−1
H := constructPoly(P′)
addEmptyDimension(H) // undo projection
return H ∩ h̄

Example 6.5: Recursive Projective Polytope Construction

Consider the set of points P3 = ((1, 1, 1)T , (2, 2, 2)T) describing a line
segment in R3. Points in P3 all lie on the hyperplane

h̄3 : x0 − x2 = 0.

In the first iteration, P is projected on the last two dimensions x1, x2
to obtain the point set P2 = ((1, 1)T , (2, 2)T) and the ambient space
dimension is reduced to R2. One example for a hyperplane both points
in P2 lie on is

h̄2 : −x1 + x2 = 0.

Projecting on dimension x2 results in P1 = ((1), (2)) for which we can
create the bounds

x2 ≥ 1 ∧ x2 ≤ 2.

Increasing the state space dimension by one accounting for x1 and adding
constraints for h̄2 we obtain

x2 ≥ 1 ∧ x2 ≤ 2 ∧−x1 + x2 ≤ 0 ∧ x1 − x2 ≤ 0

⇔x2 ≥ 1 ∧ x2 ≤ 2 ∧ x1 = x2.
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Figure 6.32: Representation-conversion of a lesser-dimensional polytope: the
set represented by two points in a two-dimensional state space is converted into
H-representation using a recursive conversion approach.

Again by increasing the state space dimension by one accounting for x0
and adding constraints for h̄3 we obtain

x2 ≥ 1 ∧ x2 ≤ 2 ∧ x1 = x2 ∧−x0 + x2 ≤ 0 ∧ x0 − x2 ≤ 0

⇔x2 ≥ 1 ∧ x2 ≤ 2 ∧ x1 = x2 ∧ x0 = x2

which describes the line segment between (1, 1, 1)T and (2, 2, 2)T.

Conversion via Template-based Objects

We can use templates to provide conversion methods for representation types
that provide the functionality to compute supporting hyperplanes for a given
set of directions, e.g., for the conversion of support functions to any other
representation. Template-based evaluation (see Section 6.4) for a support
function S for instance allows to obtain a polyhedral over-approximation S′ ⊇ S
in H-representation with a fixed number of half-spaces defining S′. To achieve
this, we use a template T = (t0, . . . , tn−1) of vectors ti ∈ Rd which are the normal
vectors of the half-spaces bounding S′. The choice of the template influences
the shape of the resulting polytope, and for set representation conversion allows
to control the result. For instance, the conversion of a d-dimensional support
function to a d-dimensional box can be achieved by choosing a template

T =
{

t ∈ {−1, 0, 1}d
∣∣∣ ∃i ∈ {0, . . . , d − 1}. ti ∈ {−1, 1} ∧

∀j ∈ {0, . . . , d − 1}. j 6= i ⇒ tj = 0
}

such that the resulting constraints are axis-aligned. Note that conversion
via template-based objects can also be used to reduce the representational
complexity of a set as this approach computes a polyhedral over-approximation
of a state set with a potentially lower number of facets.
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Figure 6.33: Oriented rectangular hulls as the result of a PCA may be used to
over-approximate any convex set represented by its vertices by a zonotope.

Conversion via Principal Component Analysis

Principal component analysis (PCA) [Pea01] as a method from statistics is
originally used to make statements about the distribution of a finite set of data
points P = {p0, . . . , pn−1}, pi ⊆ Rd. The idea is to describe the shape of the
cloud of data points by a linear combination of its main components. The result
of a PCA of P is a set C = {c0, . . . , cn−1}, ci ⊆ Rd of d vectors, the principal
components which are orthogonal to each other. The principal components
play a role that is similar to the generators of a zonotope defining an oriented
rectangular hull that contains all sample points.

Definition 6.5: Oriented rectangular hull

An oriented rectangular hull H in a d-dimensional Euclidean space can
be described as a set {h0, . . . , h2d−1} of 2d half-spaces hi = (ni, ci) with
the following properties:

• ∀i ∈ {0, . . . , d − 1}. ni+d = −ni—for each half-space there exists
another half-space whose normal vector points into the opposite
direction, which means that the bounding hyperplanes are parallel
to each other.

• ∀i, j ∈ {0, . . . , d − 1}. i 6= j ⇒ ni ⊥ nj—all normal vectors that
are not in the above relation are pairwise orthogonal to each other.

An example can be found in Figure 6.33a where the normal vectors n0 and
n2 as well as n1 and n3 are pairwise inverse and orthogonal to the other normal
vectors as described in Definition 6.5. Note that a box is a special case of an
oriented rectangular hull in which all normal vectors ni are axis-aligned. The
result of a PCA in general is not unique, for instance the point set P = p0, . . . , p3
as shown in Figure 6.33b may result in two different results. Intuitively, the
more sphere-shaped the point cloud is, the more ambiguous the output result
of the PCA may be.

The usage of a PCA to convert state sets provides a simple way to convert
any convex set P represented by the vertices whose convex hull defines P (i.e.,
a polytope in V-representation) into a zonotope in an over-approximating
fashion [Fro16]. Each oriented rectangular hull naturally is a zonotope as
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well (see Figure 6.33c), as the normal vectors returned by PCA can be used as
generators and the center point is easily determined.

6.9 Utility

Organized around our collection of state set representations presented in this
chapter, HyPro provides additional utility functions and data structures such
as points, half-spaces, containers for linear constraints and many more (see also
Figure 6.4).

Algorithms used throughout our implementation, for instance, to compute
the convex hull of a set of points or Fourier-Motzkin variable elimination are
modularized and are designed to be used elsewhere as well.

To test our library for performance, we have implemented a state of the
art flowpipe-construction-based reachability analysis method similar to the one
presented in [Le 09] for linear hybrid systems which is provided in HyPro and
whose implementation we discuss below, as it is the basis for further modules
that implement thesis contributions.

As a first step towards a tool prototype, HyPro also features a parser
for Flow* model files and compositional interchange format (CIF) input
format [BFH+14; Kie18]. To be able to visualize results, a simplified plotting
class is provided, which creates gnuplot [WKm19] files for different output
formats to allow to create pdf, png and LATEX files containing plots of the
over-approximation of the set of reachable states. To this end, the library of
state set representations has been extended by utility and algorithms which
allow users to set up flowpipe-construction-based reachability analysis methods
on their own. The modular design allows us to replace or improve single parts
easily without diverting the focus on other aspects during the development of
new methods.

Concepts that will be introduced in the following chapters such as flow-
pipe-construction-based reachability analysis extended with a CEGAR-like
refinement (see Chapter 7) or state space decomposition (see Chapter 8) along
with the required data structures and algorithms have been integrated into
HyPro as well.

Search Tree

General reachability analysis (see e.g., Algorithm 1) for hybrid automata ana-
lyzes all (possibly bounded) initial execution paths of a given hybrid automaton
H (see Definition 3.3). As discrete jumps may be taken non-deterministically,
reachability analysis induces a search tree where nodes represent the passage of
time and the parent-child relation between nodes in the tree represent discrete
jumps. The shape of the search tree depends on the utilized parameter configu-
ration for the reachability analysis. Analysis parameters such as aggregation or
the time step size may affect the branching structure (see Section 3.4) or render
subtrees not reachable, depending on the introduced over-approximation errors.
In the following, we give a formal definition of a search tree as we use in our
implementation.
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6. A Library for State Set Representations

Definition 6.6: Search Tree

For a hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init) with
dimension d = |Var|, a state set Σ, a time horizon T ∈ R≥0, and a
parameter configuration Par, a search tree is a tuple

S = (Nodes, Root, Succ, State, Trace, Completed)

with the following components:

• a finite set Nodes of nodes and a root node Root ∈ Nodes;

• a set Succ ⊆ Nodes×Nodes of edges such that (Nodes, Root, Succ)
is a tree;

• a function State : Nodes → (Loc × 2Rd
) that assigns to each node

a symbolic state of H as data;

• a function Trace : Succ → (I× Edge) assigning to each edge of the
search tree an interval and a jump of H;

• a function Completed : Nodes → {0, 1}; we say that a node n is
completed if Completed(n) = 1;

• for each node n ∈ Nodes, either Completed(n) = 0 and n has no
successors (i.e., ∀(n′, n′′) ∈ Succ. n′ 6= n), or Completed(n) = 1
and for each (n, n′) ∈ Succ with Trace((n, n′)) = (I, e) we have
that

FP(State(n), Par) =
{

State(n′)
∣∣ (n, n′) ∈ Succ

}
.

A search tree is called complete for a jump depth J ∈ N≥0 if each node
n ∈ Nodes with depth less than J is completed.

We made the design decision to store only the initial sets State(n) in the
tree nodes for which flowpipes and jump successors are computed. This decision
was made to reduce memory consumption during the analysis, however storing
also the flowpipes might have some advantages. Though in our algorithms we
never need the flowpipe again, we could recompute it in case it is required.

When we represent search trees graphically, we annotate the edges with the
Succ information about the time interval and the jump taken to generate the
given child node. When clear from the context, we omit the information about
the jump and label with the timing information only.

During time successor computation starting from node n ∈ Nodes we com-
pute a sequence of flowpipe segments Ωi for the given time horizon. For each
edge e ∈ EdgeH, we collect all segments, apply intersection with the guard,
apply the reset, intersection with the target invariant and optionally aggregating
or clustering during these computations, as described in Section 3.4. For each
resulting symbolic state (`, N) covering time successors from the interval I we
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create a new node n′ with State(n) = (`, N) and Trace((n, n′)) = (I, e) in the
search tree3.

Note that this enables us to map each path

n0
(I0,e0)→ n1

(I1,e1)→ · · ·
(Ih−2,eh−2)→ nh−1

in the search tree with State(ni) = (`i, Ni) to a symbolic path

Π(nh−1) = (`0, N0)
I0→ (`0, N′

0)
e0→ (`1, N1) · · · (`h−1, Nh−1)

of H with some valuation sets N′
i that over-approximate the states reachable

from Ni within time Ii. The valuation sets N′
i contain those flowpipe segments

whose duration intersects with the time interval Ii and from which the given
jump ei was taken to obtain Ni+1. This information is not stored in the
search tree but it can be reconstructed on demand (using the fixed parameter
configuration for the analysis).

Though the definition allows different nodes with the same symbolic path, in
our approach each node will have its unique symbolic path leading to it which
we will call the symbolic path of the corresponding search tree path. We achieve
this by including each jump successor of each flowpipe segment in precisely one
child node.

Tasks and Workers

During the analysis, time and discrete transitions need to be explored alternat-
ingly. For these computations, we introduce the concept of a task as a data
type to store the information needed to compute one flowpipe and all of its
potential jump successors.

Definition 6.7: Task

Assume a search tree generated by flowpipe-construction-based reach-
ability analysis with a fixed parameter configuration Par for a given
hybrid automaton. A task t

t = (n)

is specified by a node n in the search tree (see Definition 6.6).

A worker process is responsible for the execution of tasks. The processing of
a task t = (n) involves the computation of time successor states starting from
the initial set State(n) using configuration Par; as a consequence of enabled
discrete transitions, new child nodes of n are added to the search tree, which
require further processing after which Completed(n) = 1 is set.

Successors of discrete jumps, for which tree nodes have been created, can
be stored for processing by creating new tasks. As several discrete transitions

3Instead of a single interval, it is straightforward to extend to sets of intervals. For the
sake of simplicity we use only a single interval in this thesis.
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main worker

init

create initial tasks

dispatch worker

post process

exit

try: get task

got task?

compute
reachability

task queue

enqueue

dequeue





enqueue

start worker

Figure 6.34: Modularized worker-based reachability analysis in HyPro. Dashed
lines represent data flow.

may be enabled due to non-determinism in the model, we store new tasks in a
queue equivalent to the set Rnew in Algorithm 1.

As stated in [FR09], we could also consider specialized workers (e.g., ap-
plying different successor computation approaches dedicated to certain types
of dynamics). In a later part of this work (see Chapter 8), we make use of
specialized workers in the context of the decomposition of the state space as
described in [SNÁ17].

Once a worker completes processing a task, it adds the resulting jump
successor state sets as new nodes to the search tree and creates tasks for them
to trigger their processing.

The whole process is illustrated in Figure 6.34. The main module (left)
is responsible for pre- and post-processing which involves parsing input files,
initializing data structures, and after the analysis creating plots. The actual
flowpipe-construction-based reachability analysis is performed by the worker
module (right) in which iteratively tasks from the task queue are executed,
and resulting successor tasks are pushed to the task queue. Note that at this
point, the worker is implemented as a module—we will extend this concept to
worker-threads in Section 7.5.

In our implementation, the task queue is implemented as a first-in-first-
out queue—consequently, the search tree is explored breadth-first. Note that
changing the queue order to implement a first-in-last-out queue, i.e., a stack
allows switching to depth-first exploration of the search tree. By heuristically
adjusting the queue order, further mixed approaches may be implemented.

6.10 Experimental Evaluation

In this section, we present a small experimental evaluation of HyPro on a
selection of benchmarks similar to the one presented in [SÁB+17]. We have
chosen the same systems for safety verification and run our benchmarks on the
same machine with 4 × 4 GHz Intel Core i7 CPUs and a memory limit of 8 GiB
and a timeout (to) of 15 min but with the current version of HyPro which
reflects the state presented in this work. The time horizons are the same, but
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the jump depth for the rod reactor system has been increased from two to five
jumps to have a consistent set of benchmarks throughout this work.

Benchmark Selection. Similar to our original evaluation4 we have selected
three benchmarks, the bouncing ball (Ball), the rod reactor (Rods), and the
switching system (Sw5). For the bouncing ball as well as for the rod reactor
system we use a time step size δ = 0.01, while for the switching system a time
step size δ = 0.001 is required. The respective time horizons and maximal jump
depths can be found in Section 4.1.

Comparison. In this evaluation we compare the performance of different state
set representations implemented in HyPro, namely boxes (box), convex poly-
topes in H-representation (hpol) and V-representation (vpol), our wrapper to
the PPL-library (ppl), support functions (sf), and zonotopes (zono). Note that
we use boxes and support functions that implement all presented improvements.
Furthermore, we compare the effects of different number representations on
the running times; here, we compare a native double implementation to the
widely used mpq_class-type provided by the gmp-library, which implements
rational numbers. Additionally, we make use of different configurations for
linear optimization in our evaluation: while glpk is always used as a pre-solver
in HyPro, we may optionally invoke further backends for linear optimization to
increase the precision of the obtained results (see Section 6.7). Here, we compare
an implementation that uses only glpk with two further implementations that
use SMT-RAT or Z3 as additional backends.

Furthermore, to put the obtained results in relation, we ran the tool SpaceEx
on the same selection of benchmarks with similar parameters. For SpaceEx
we vary two settings: the used algorithm (LGG [Le 09] and STC [FKL13]),
and the number of template directions used for support functions during the
computation. We use an octagonal template, which is also used in the support
function implementation of HyPro and a box-shaped template—the results for
box-shaped templates can be found in the box-rows although technically the
underlying representation is not a box. Note that the underlying implementation
of the LGG-algorithm is similar to the method implemented in HyPro which
is why the results from HyPro using support functions with native double
numbers and no secondary LP-solver backend are especially well-suited for
comparison.

Results. The running times from our evaluation can be found in Table 6.3.
In general, the effects of the choice of state set representation are reflected in
the running times and behave as expected. While for instance boxes produce
overall good results, with the chosen settings, it was not possible to prove safety
for the five-dimensional switching system. In contrast to this, the running times
for instance for convex polytopes are significantly longer, which is expected as
operations on convex polytopes in general require more computational effort but
produce more precise results. In comparison with the PPL implementation, our

4as in [SÁB+17]
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implementation of convex polytopes shows room for improvements regarding
running times and robustness; running times where the algorithm finished but
produced an erroneous result are put in braces. Results obtained using support
functions show running times that are comparable to the ones obtained with
SpaceEx (LGG) when using native double numbers and no second optimization
framework.

The effect of different number representations is observable among all rep-
resentations, especially for those whose operations involve many arithmetic
operations such as convex polytopes or zonotopes. The effect for boxes and
support functions is smaller, as operations on boxes in general require less com-
putational effort and for support functions sampling the support has the most
significant effect on running times, which can be optimized in case the underly-
ing set is box-shaped. Furthermore, we could observe that rounding errors play
a significant role when using convex polytopes as a state set representation—
both representations show increased erroneous behavior when using double
numbers. In contrast to this, the polytopes implemented in the PPL internally
use rational number representations and consequently do not exhibit these
problems—all numbers need to be converted which adds slight overhead when
using double numbers.

The effect of different additional solving backends can be observed for state
set representations which strongly rely on linear optimization, e.g., support
functions, where additional solving backends influence the running time. Note
that this effect is diminished by using boxes as an underlying state set rep-
resentation for support functions where most calls to linear optimization can
be avoided. In contrast to this, zonotopes or boxes for instance do not rely
on linear optimization and consequently are not affected by different linear
optimization backends.
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Table 6.3: Running times in seconds, time-out (to) was 15 min obtained with
HyPro using different number type implementations and different linear opti-
mization configurations. Results marked with “†” indicate that safety could not
be proven with this configuration, entries in brackets reflect erroneous results.

mpq_class double SpaceEx
glpk

glpk + glpk
glpk

glpk + glpk
SMT-RAT + Z3 SMT-RAT + Z3 LGG STC

bo
x Ball 0.16 0.14 0.13 0.11 0.13 0.11 0.10 0.07

Rods 2.01 1.78 1.16 0.30 0.40 0.42 2.57 0.32
Sw5 † † † † † † † 0.05

hp
ol

Ball 0.42 (0.11) 10.62 to (0.11) (0.23)
Rods 94.01 to 692.81 (18.41) (0.14) to
Sw5 to to to 15.13 (0.25) to

vp
ol

Ball 0.22 0.32 0.30 0.14 0.16 0.30
Rods 134.43 680.45 149.38 to (0.88) to
Sw5 to to to to to to

pp
l Ball 0.35 0.25 0.23 0.21 0.24 0.21

Rods 9.28 10.56 9.18 6.44 7.19 6.42
Sw5 to to to to to to

sf

Ball 0.33 2.15 0.33 0.13 0.14 0.13 0.14 0.08
Rods 690.78 to 674.60 4.30 4.63 5.97 4.40 0.50
Sw5 33.19 34.71 33.07 0.13 0.15 0.13 0.36 0.32

zo
no

Ball to to to 0.12 0.11 0.11
Rods to to to 0.61 0.33 0.52
Sw5 137.92 138.31 150.61 0.14 0.14 0.13
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7

Counter Example Guided Abstraction Refinement
in Hybrid Systems Reachability Analysis

Based on our implementation of HyPro as presented in the previous chapters,
in this chapter, we consider an extension towards flowpipe-construction-based
reachability analysis based on counterexample-guided abstraction refinement
(CEGAR).

Hybrid systems reachability analysis based on flowpipe construction requires
expert knowledge to be applied to real-world systems. The selection of suitable
analysis parameter values, e.g., the time step size or the state set representation
is crucial for the success of safety verification (see Section 3.4), but determining
optimal parameter values is a difficult task: each implemented method comes
with its own set of parameters, which all need to be chosen with respect
to the system model. Parameter configurations, which result in a coarse
approximation might not allow to verify the safety of a model, i.e., produce
a spurious counterexample: we can observe a non-empty intersection of the
over-approximation of the set of reachable states and the set of bad states,
even though the actual system may be safe. On the other hand, parameter
configurations resulting in small approximation errors might unnecessarily
increase running times. Intuitively, an optimal parameter configuration thus is
as coarse as possible and as precise as necessary.

In this chapter, we discuss a CEGAR-based symbolic path refinement
approach, which aims at deriving the appropriate level of detail for every single
node in a given search tree. While some symbolic paths in the search tree may
represent paths that lead to potentially unsafe states, others can be declared
safe. We propose an approach to restricting iterative refinement to the necessary
case of potentially unsafe paths to refute spurious counterexamples. Refinement
of a symbolic path can be achieved by recomputing the approximation of
reachability following the same jumps within the same time intervals again but
using a different parameter configuration, ideally chosen in such a way that
the resulting over-approximation error is smaller than the previous one. To
further reduce computational effort, we refine symbolic paths not individually
but reuse computations for shared prefixes as much as possible. Furthermore, as
we will show in Section 7.3, our approach is extensible by increased information
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reuse between refinement levels, which can additionally reduce running times.
Additionally, we show a natural way of parallelizing our approach in Section 7.5.

Related Work. Apart from other applications, CEGAR-approaches [CGJ+00]
have been used in hybrid systems reachability analysis in the past in several
ways. Different flavors of CEGAR have been used with varying refinement and
abstraction methods, see for instance [ADI03; CFH+03; BDF+13; BDF+16;
Nel16; BFG+17]. We will shortly review the basic ideas of available approaches
before we introduce our method.

The authors in [ADI03] present a predicate-refinement method, in which
predicates from a provided set as well as new predicates synthesized during
the analysis are used to identify and rule out spurious counterexamples. The
approach is based on refining an abstraction of the state space by adding
predicates, which separate regions in the abstract state space. In a closely
related approach [CFH+03], the authors refine their abstraction of a hybrid
system iteratively based on counterexamples. Refinement is achieved by splitting
symbolic states which are reachable in the abstraction based on their reachability
using a tighter approximation. Similarly, enabled discrete transitions in the
model abstraction can be refuted in case they are not enabled when using a
more precise approximation.

In [BDF+13; BDF+16], the authors propose to use coarse approximations
of the set of reachable states to guide the analysis towards potential counterex-
amples. In their work, an abstraction of the set of reachable states is obtained
by specific analysis parameters, in this case the time step size and the template
directions for the polyhedral approximation of the used support functions (see
Section 6.4). The abstractions are stored in a pattern data base (PDB), which
allows storing both the discrete and the continuous abstraction at the same
time. The length of potential erroneous paths in the PDB is used as a cost
function to guide the search using a more fine abstraction. Guidance in this
context means that paths that may potentially lead to a bad state will be
explored first during the analysis. A similar approach for guidance has been
presented in [BFG+12], in which the Euclidean distance to the set of bad states
without consideration of the discrete structure is used as a cost function.

In the Ph.D. thesis of Johanna Nellen [Nel16], she presents CEGAR-ap-
proaches for hybrid systems as an extension to the tool SpaceEx. In her
approach, an abstract model of a given system which does not specify dynamics
is refined iteratively by adding dynamics on the basis of observed potential
counterexamples during the analysis.

In [BFG+17], the directions defining a template for template polyhedra
are synthesized during analysis to iteratively rule out counterexamples by
refining the state set representation used. To our knowledge, this is the first
approach in which the state set representation is refined specifically, guided by
a counterexample.

Compared to previous works, the presented method is more general and
allows for an arbitrary number of refinements. As in the approach in [BDF+16],
our method guides the search using partial information obtained during runtime
by prioritizing path refinement over regular state space exploration.
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In the following, we present our counterexample-guided approach towards
the iterative refinement of the abstraction of the set of reachable states, which
we refer to as partial path refinement. This chapter is based on our work [SÁ18a;
SÁ18b] and contains excerpts of those works which are used in consent with
the co-authors.

7.1 Partial Path Refinement

As presented in Sections 3.3 and 3.4, the result of a flowpipe-construction-
based reachability analysis of a hybrid automaton H highly depends on the
selected parameter configuration used to analyze H. In case the analysis of
H is successful using Par, the system can be declared safe, as the computed
over-approximation Reach′H of the set of reachable state ReachH is not conflicting
with the safety specification Pbad.

In case the analysis of H fails, i.e., a non-empty intersection between the
over-approximation Reach′H of the set of reachable states ReachH and the set
of bad states Pbad is detected in a node n∗ of the search tree, the result is
inconclusive. We refer to the symbolic path Π(n∗), which may contain an
execution of H conflicting with Pbad as a potential counterexample. In this
case, either Π(n∗) contains an unsafe path, or the computed counterexample is
spurious, i.e., the computed over-approximation of the set of reachable states
Reach′H is too coarse, which causes the violation of the safety specification.
While the first case, in general, cannot be proved unless under-approximative
computations are used, a valid approach to overcome the second case is to use
a different parameter configuration Par′, which reduces the over-approximation
error, usually at the cost of increased running time. In current approaches, this
leaves the user to choose a suitable Par′ manually and restart the whole analysis
from scratch.

In this section, we will present our approach to overcome this problem. The
general observation we can make is that up to the point in which an intersection
with the set of bad states occurred, potentially much information has already
been obtained. This information is discarded when restarting the analysis. Our
approach aims at storing information during the analysis and uses it to improve
consecutive analysis runs on the same system H using different parameter
configurations Pari. Similar to the approach presented in [BDF+16], from a first
analysis that detected a potential counterexample, we already gain information
on safe as well as potentially unsafe paths. When performing a fresh restart
with another parameter configuration Par′ in the hope of more precise results,
typically this information is lost.

Our approach tries to avoid this information loss by building on previous
results and refining only the approximation of ReachH on potentially unsafe
paths. With our approach of partial path refinement, we want to achieve that
during the analysis we (i) only use cost-intensive parameter configurations where
needed and (ii) we reuse information gained during previous analysis runs to
speed up the search.
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We want to make use of several analysis parameter configurations to detect
and refute spurious counterexamples during analysis. In our setup, a collection
of parameter configurations is provided a priori as a search strategy by the user.

Definition 7.1: Search Strategy

A search strategy is a non-empty, finite, ordered sequence of reachability
analysis parameter configurations Pari

(Par0, Par1, . . . , Parm−1) .

We use the term refinement level (starting with zero) to address the position
of the parameter configuration in a given strategy.

In this section we consider the parameters state set representation rep, a time
step size δ and aggregation settings agg. Thus, a parameter configuration in this
section is a tuple Par = (rep, δ, agg). In general, depending on the underlying
reachability analysis method, parameter configurations may contain other or
further parameters.

In general, it is advisable to choose a search strategy, in which the parameter
configurations at increasing levels result in an increase in precision of the
approximation of the state set. This can be a difficult decision, as for some of
the analysis parameters no total order exists with respect to induced precision.
Note that, though advantageous, this property is not a necessary condition for
the correctness of the method.

Consider a hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init) and
a search strategy (Par0, . . . , Parm−1) of m parameter configurations. Starting
from a set of initial states1 (`0, N0), the search tree is created by a worker using
flowpipe-construction-based reachability analysis with parameter configuration
Par0. If at a certain point the verification fails, for instance during the analysis
in the current tree node n∗ using configuration Pari, a non-empty intersection
between the over-approximation of the set of reachable states Reach′H and the
bad states Pbad is encountered, and a partial path refinement is triggered. As
mentioned before, partial path refinement aims at improving the precision of
the computed Reach′H by using different parameter configurations collected in a
search strategy.

To achieve this, the symbolic path

Π(n∗) = (`0, N0)
τ0−→ (`0, N′

0)
e0−→ (`1, N1)

τ1−→ · · · τk−1−−→ (`k−1, N′
k−1)

where State(n∗) = (`k−1, Nk−1) holds is refined using the next parameter
configuration Pari+1 (if available). In case i = m − 1 holds, i.e., there is no
further parameter configuration in the current search strategy, the potential
counterexample given by Π(n∗) cannot be refuted and the algorithm terminates
with an inconclusive result. Starting from the symbolic state (`0, N0), we
use flowpipe-construction-based reachability analysis with the next parameter
configuration Pari+1 to obtain a new set of symbolic states for each element of
Π(n∗). To realize refinement of Π(n∗), for the refinement of time transitions

1In general several initial state sets are possible, however for the presentation we consider
single initial sets.
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τr = [tl,r, tu,r] we use tu,r as a local time horizon. Accordingly, the guard of the
discrete jump er is checked for enabledness within the flowpipe segments for the
time interval τr only. The refinement on this path naturally ends, if a discrete
transition er which was enabled on Π(n∗) using Pari is not enabled any more
when using a different configuration Parj, j > i.

This way, solely the approximation of the set of reachable states on a
selected path Π(n∗) in the search tree is refined to be able to declare a potential
counterexample spurious. The whole process is illustrated in Example 7.1.

Example 7.1: Partial Path Refinement

Consider the following exemplary search tree starting from the root node
A. For the analysis a strategy

(Par0, Par1, Par2)

is used. Starting with configuration Par0 (very light petrol) the analysis
is successful for the path from A to D but fails to successfully declare
safety for the path from A to G, for which a refinement with configuration
Par1 is triggered (below left).

A

B C

D



E F

G



A

B C

D



E F

G



After successful validation (right) using a different parameter configura-
tion Par1 (light petrol), the analysis may continue.

The change between different parameter configurations Pari = (repi, δi, aggi)
and Parj = (repj, δj, aggj) might require the conversion of the representation for
the initial state set (see Section 6.8) in case repi 6= repj. Furthermore, when
switching to a different time step size δj 6= δi the matrices Φi = eδiA need to
be recomputed to account for δj.

As denoted before, the path Π(n∗) is used to identify the path in the search
tree, which is to be refined using the specified parameter configuration. In some
cases, the refined computations are also represented by a single path in the
search tree, as before. However, in some other cases, the refined computations
might themselves be tree-shaped, for instance, if aggregation is turned off
in the refinement, which requires more involved mechanisms to maintain the
bookkeeping for all levels in the same search tree.

Assume a path n0, . . . , nn−1 in the search tree from the root node n0 to
nn−1 = n∗ with Trace(nk, nk+1) = (τk, ek), which is a counterexample path
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Π(n∗) to be refined with configuration Parj. We start with the root node n0,
which is to be processed first at level j with the initial state (`0, N0). We use the
parameter configuration Parj to compute time successors for the time interval
τ0 and take a discrete transition e0 = (`0, g0, r0, `1) during the time interval τ0,
if it is indeed enabled during that period from the refined flowpipe.

While the instructions for computing time successor states are easy to follow,
we need to pay special attention to discrete jumps: depending on time step
sizes and aggregation settings, this may result in several successor nodes in the
search tree (see Figure 7.1) or in no successors at all, when e.g., new information
has been gained during refinement.

That means we need to cope with a dynamic tree structure as a result of
refinement. To provide an appropriate data structure, we have considered two
options: (i) keep a separate search tree for each refinement level, or (ii) maintain
a single tree with a dynamic structure. In this work, we follow the second
option to ease the information exchange between different refinement levels.
Consequently, search tree nodes become multi-dimensional, as information for
each refinement level is stored in each node on the refinement path.

Definition 7.2: Refinement Search Tree

For a hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init) with
dimension d = |Var|, state set Σ, a time horizon T ∈ R≥0, and a
search strategy (Par0, . . . , Parm−1), a refinement search tree is a tuple
(Nodes, Root, Succ, State, Trace, Completed) with the following compo-
nents:

• a finite set Nodes of nodes and a root node Root ∈ Nodes;

• a set Succ ⊆ Nodes×Nodes of edges such that (Nodes, Root, Succ)
is a tree;

• State is a collection of m partial functions where for i = 0, . . . , m− 1
its ith component Statei : Nodes → (Loc × 2Rd

) assigns symbolic
states of H as data to nodes;

• Trace is a collection of m partial functions where for i = 0, . . . , m−
1 its ith component Tracei : Succ → (I × Edge) assigns an interval
and a jump of H to edges of the search tree;

• Completed is a collection of m partial functions where for i =
0, . . . , m − 1 its ith component Completedi : Nodes → {0, 1}; we
say that a node n is completed at level i if Completedi(n) = 1;

• for each node n ∈ Nodes, either Completedi(n) = 0 and Statei is
undefined on all children of n if any, or Completedi(n) = 1 and for
each (n, n′) ∈ Succ with Tracei((n, n′)) = (I, e) we have that

FP(Statei(n), Pari) =
{

Statei(n′)
∣∣ (n, n′) ∈ Succ

}
.

A search tree is called complete for a jump depth J ∈ N≥0 if each node
n ∈ Nodes with depth less than J is completed on at least one level.
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guard
B1

C1

a) Coarse flowpipe segments (very light
petrol) are refined (light petrol) such
that two instead of one segment satisfy
the guard predicate.

A0

B0

[t1, t2]

A0 A1

B0 B1 C1

[t1, t2]

[t′1, t′2]
∅∅∅

[t′2, t′3]

refine

b) Refinement (light petrol) of a previ-
ous path (very light petrol) creates an
additional node C1 in the search tree.

Figure 7.1: Refinement with a smaller time step and no aggregation creates ad-
ditional nodes in the search tree, stored time intervals assigned to the respective
transition are updated.

In our algorithm, when a new node is created, all partial functions are
undefined for this node to avoid meaningless assignments. Note that we do not
remove nodes from the search tree during the analysis, even if they are declared
unreachable.

Similarly to the approach without refinement we can define for each path

n0
(I0,e0)→ n1

(I1,e1)→ · · ·
(Ih−2,eh−2)→ nh−1

in the search tree and each refinement level j where Statej(ni) = (`i, Ni) a
symbolic path

Πj(nh−1) = (`0, N0)
I0→ (`0, N′

0)
e0→ (`1, N1) · · · (`h−1, Nh−1)

of H. Our algorithm will ensure, that if Statej(nh−1) is defined, then it is
defined for all ni with i < h − 1.

Technically we could use m-dimensional arrays to uniquely identify data for
the different levels in the search tree. In our implementation, we use vectors
and push a dedicated dummy refinement to indicate that the data is undefined
on the given level. In the illustrations (see e.g., Figures 7.1b and 7.2b), the tree
nodes are represented by sequences of boxes, similar to an array: the number
of boxes is the number of applied refinements for this node, and undefined data
at level i is indicated by the i-th box being empty. In contrast to this, in the
illustrations we use uncolored node parts to indicate, that the node has not
been processed on the respective refinement level.

As each refinement run starts at the root node, two different refinements
for the paths to nodes nm and nn with configuration Park may share a common
prefix, for which the computations only need to be done once. We illustrate
this with the following example.
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guard
B1

a) When switching aggregation on by a
refinement, two sets satisfying the guard
predicate are unified (aggregated).

A0

B0 C0

[t1, t2] [t2, t3]

A0 A1

B0 B1 C0

[t1, t2]

[t1, t3]
[t2, t3]

∅∅∅

refine

b) One instead of two jump successors in
the search tree as a result of refinement.

Figure 7.2: The sets satisfying the guard predicate are unified (aggregated)
during refinement resulting in only one instead of two discrete jumps successor
nodes in the search tree.

Example 7.2: Refinement reuse

Consider the search tree from Example 7.1 along with the same refine-
ment strategy as before. The analysis of node F fails using the first
parameter configuration Par0. The scheduled refinement for nodes A
and its follow-up refinement for node B with parameter configuration
Par1 can be skipped as the information is already available.

A0 A1

B0 B1 C0 C1

D0E0 E1 F0 F1

G0 G1

 

  

A0 A1 A2

B0 B1 B2 C0 C1 C2

D0E0 E1 E2 F0 F1 F2

G0 G1

 

   

Though it would be possible to continue with the same refinement level after
successful falsification of a potential counterexample, in our implementation the
analysis continues with a lower refinement level (see node H in Example 7.2) to
reduce the effort for future computations. That means if a counterexample can
be refuted at refinement level i then the i-th state set is used to generate initial
states for all children for all refinement levels 0 ≤ k ≤ i. Note that these are
generated, but only processing of level zero is scheduled. The other initial sets
are only needed in case a further counterexample candidate is detected in the
subtree below. The reason why we add them is to avoid the recomputation of
the flowpipe.

Example 7.3: Refuted counterexample

Consider the search tree from Example 7.2. After successful refutation
of the potential counterexample in node F, a successor node H is added
as a child node with all initial states up to the maximal level required to
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refute the counterexample in F (see below). Only the analysis for level
zero is scheduled (and in this case successfully applied).

A0 A1 A2

B0 B1 B2 C0 C1 C2

D0E0 E1 E2 F0 F1 F2

H0 H1 H2G0 G1

  



In the previous examples we have used a simplified representation of the
edges of the search tree for illustrative purposes. In the following, we
show two excerpts of the above search tree with arrows indicating the
actual relation between the different refinement levels inside the tree
nodes.

A0 A1 A2

B0 B1 B2 C0 C1 C2

F0 F1 F2

H0 H1 H2

 



The first excerpt (left) shows how the different refinement levels are
related in the root node. After the successful refutation of a counterex-
ample, the refinement level is reduced. All intermediate initial sets are
created from the smallest refinement level which was able to refute the
counterexample (right).

7.2 Data Structures and General Concepts

Next, we present how we adapt the HyPro analysis module as described in
Section 6.9 to fit the need of the partial path refinement approach.

We extend the definition of tasks (see Definition 6.7) by two fields to obtain
refinement tasks. For the sake of simplicity, in the following, we use the notion
of a task synonymous to refinement task.

Definition 7.3: Refinement Task

Assume a search tree generated by flowpipe-construction-based reacha-
bility analysis with partial path refinement for a given hybrid automaton
using a search strategy (Par0, . . . , Parm−1). A refinement task t is a tuple

t = (ni, Parj, n∗),
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main worker

init

create initial tasks

dispatch worker

post process

exit

try: get task

got task?

compute
reachability

task queue

enqueue

dequeue





enqueue

start worker

Figure 7.3: Modularized worker-based reachability analysis in HyPro. Dashed
lines represent data flow.

which contains two nodes ni and n∗ of the search tree and an analysis
parameter configuration Parj with j ∈ 0, . . . , m − 1.

As before, tasks are held in a (possibly ordered) globally accessible task
queue. A task t = (ni, Parj, n∗) contains all information required to compute
time successor states starting from Statej(ni) using the parameter configuration
Parj. Each task (ni, Parj, n∗) that is to be processed specify nodes such that
the flowpipe FP(State(n∗), Parj−1) of n∗ has a non-empty intersection with Pbad
and the depth of n∗ is at least the depth of ni. However, as explained before,
due to different branching structures at different refinement levels, the path in
the search tree from the root node to ni is not necessarily a prefix of the path
from the root to n∗. Nevertheless, we can definitely state that the sequence
of jumps attached to the path to ni is a prefix of the sequence of jumps on
the path to n∗. An analogous rule cannot be stated for the sequence of timing
information.

To avoid different representations of tasks at refinement level zero and
higher, that means initial reachability computations and refining reachability
computations, we represent all tasks as refinement tasks (ni, Parj, n∗) by setting
n∗ = ⊥ for j = 0.

Refinement Worker. A refinement worker provides functionality to process a
(refinement) task t = (ni, Parj, n∗), i.e., to over-approximate the reachable time
successor states using analysis parameters from the configuration Parj. The
symbolic state Statej(ni) is used as the set of initial states for the time successor
computation. Discrete jump successors for each segment satisfying a guard
condition are computed afterward, which results in the update respectively
creation of child nodes in the search tree and the potential creation of tasks
for their processing. It is essential to mention that similar to the original
case without refinement, when computing successors for a node at a positive
refinement level, we compute successors for all outgoing jumps, instead of
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computing it only for the counterexample path. The reason for this is to avoid
multiple computations of the same flowpipe, in case several counterexamples are
detected at the same level with a common prefix. While this can be expected
to save computational effort, this also brings some complications as explained
in Example 7.4.

A pseudo-code version of the partial path refinement method, which is based
on the flowpipe-construction-based reachability analysis method presented in
Algorithm 2 can be found in Algorithm 8.

Algorithm 8: Partial path refinement algorithm inside a worker.
Data: Task list T
Output: Answer to R ∩ Pbad = ∅

while true do
if T is empty then

return safe
take an element (ni, Parj, n∗) from T
R := computeFlowpipe(Statej(ni), Parj)
if R contains unsafe states then

if (j = m − 1) then
return unknown

addToTaskList(n0, Parj+1, ni);
else

if jump depth not yet reached then
computeJumpSuccessorsAndUpdateTaskList(ni, Parj, n∗, R)

Refinement Task Priority. The fact that a potential counterexample cannot
be refuted should be detected as early as possible to be able to stop further
computation. Therefore, during the analysis, we want to prioritize refinement
tasks with respect to basic reachability analysis tasks. This can either be
achieved by increasing the task priority, i.e., its position in a task queue, or by
introducing a second queue for priority tasks, which is accessed prior to the
basic task queue. In the following, we assume a single queue.

Remember that in the previous non-refining setting, the task queue was
implemented as a first-in-first-out queue, which corresponds to a breadth-first
search. In the refinement setting, prioritizing refinement tasks is not sufficient
to ensure breadth-first search at all refinement levels, but we need to add as
second priority the depths of the node which needs to be refined. A third
priority criterion first-in-first-out defines the order of tasks of the same type
and equal depth. This priority definition has a similar effect as described in
the approach described in [BDF+16] where the authors use a fast, box-based
detection of possible counterexample traces to compute a guiding metric to
decide which branch to process first.

149
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Alternative Entry Points for Refinement. In the presented approach refine-
ment of a node n∗ starts at the root node and the set of reachable states on
the path in the search tree to n∗ is refined according to the next parameter
configuration in the defined strategy. At the first refinement, the root node
has not been yet processed at the desired level. However, for later refinements,
sharing a prefix with an already refined path in the search tree, the targeted
node in the refinement task might already be processed at the desired refine-
ment level. Such nodes, which are already on the desired refinement level could
theoretically be skipped for refinement.

Therefore, it is tempting to assume that the first node on the path from
n∗ to the root node, which has the desired refinement level can be used as
an entry point for refinement to avoid starting refinement from the root node.
However, this is rarely possible due to the changing search tree structure, as we
will illustrate in the following.

Without aggregation, refinement may change the branching structure of the
search tree for the new refinement level, because the number of successor nodes
in the search tree depends on e.g., the time step size used. As a consequence,
following a single refinement path as described before is not sufficient. We
illustrate this in Example 7.4.

Example 7.4: Refinement Level Relation

Consider the excerpt of a search tree as depicted below (left). Starting
with the initial state set A0 at refinement level zero, we assume two
successors B0, C0 are added as children in the search tree resulting
from two different discrete jumps e0, e1. Assume that processing B0
detects a potential counterexample. During refinement of A0, for the
discrete jump e1 two successor nodes C1, D1 are added (right). After
successful refutation of the first counterexample, during the processing
of C0, another potential counterexample is detected.

A0

B0 C0



τ0, e0 τ1, e1

A0 A1

B0 B1
C0 C1

D1







τ0.e0
τ′

1, e1

τ′′
1 , e1

For the refinement of C0 it is not sufficient to use only the already
initialized C1 but also D1 has to be considered, as both, C1 and D1
result from a refinement of A0.

There is another case we have to keep in mind that leads to additional
branching in the search tree structure in the presence of refinements, even if
the refinement does not change the aggregation setting. Assume that clustering
is switched on, collecting successors into at most n > 1 clusters (into n clusters
if there are at least n successors, otherwise each successor is added separately).
If at level i there are less than n successors but due to e.g., smaller time step
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x

y

Figure 7.4: Depending on the dynamics, the search tree branching structure
may change when using different time step sizes and aggregating all segments
(petrol) which consecutively enable a transition (guard: green). We use light
petrol to depict flowpipe segments in a coarse approximation and dark petrol
for a more precise approximation.

size at the next level there are more than n successors computed, the number
of children changes, thus the tree structure is modified.

A similar effect appears, if we consider another case of uniting successors,
in which time consecutive successors are aggregated, such that the number
of successors is determined by the number of changes in the enabledness of a
discrete jump. Coarser approximations might not recognize all changes in the
enabledness, for example, if the time step size is longer than the duration of
continuous disabledness. A refinement step, for example, reducing the time step
size below that duration, might increase the number of successors as shown in
Figure 7.4.

To avoid tedious checks to detect such cases we chose the safe way always
to start refinement from the root node and when already refined nodes are
encountered, collect all relevant children as specified in the following definition.

Definition 7.4: Relevant Children

Assume a hybrid automaton, a search strategy (Par0, . . . , Parm−1), and a
refinement search tree (Nodes, Root, Succ, State, Trace, Completed). As-
sume furthermore a refinement task t = (n, Parj, n∗) where j > 0, and
the depths of n respectively n∗ in the search tree are i resp. h and where

Πj−1(n∗) = (`0, N0)
τ0→ (`0, N′

0)
e0→ (`1, N1) · · · (`h−1, Nh−1)
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such that Statej(n) is defined and Completedj(n) = 1. We define the set
of relevant child nodes for t in the search tree as follows:

rel(t) =
{

n′ ∈ Nodes
∣∣ (n, n′) ∈ Succ ∧ Tracej−1(n, n′) = (τ, e)∧

τi ∩ τ 6= ∅ ∧ ei = e}

If the conditions of Definition 7.4 hold, meaning that the node of a task t
is already completed at the requested level, then rel(t) is the set of nodes for
which refinement tasks are added to the queue in Algorithm 8 in the function
computeJumpSuccessorsAndUpdateTaskList.

7.3 Information Reuse

During the reachability analysis of a given hybrid system H, we store certain
information such as time intervals of jumps in the search tree. Apart from
plotting, computed flowpipe segments are only used temporarily to validate
predicates such as guards, invariant conditions, or bad states. In the previous
section, we have presented an idea on how we can use this information to
identify which computations are needed to refine a counterexample, without
recomputing the whole reachability.

In general, timing information from events in which predicates such as guards,
invariant conditions, or bad states were satisfied can be further exploited during
refinement, beyond what was explained in the previous section. The main idea
is based on the fact that the timing information stored in the search tree is also
over-approximating. For example, if a guard is enabled for a part of the time
duration of a flowpipe segment, but not during the whole time interval, the
successors are still labeled with the whole time interval. Thus, when we change
the time step size, we get different timing information with different precision.
We can exploit this fact in the refinement by taking the strongest statement we
can derive from the information collected at the previous refinement levels.

To illustrate this, we are going to use the intersection with guard predicates
as a running example. Consider a path n0, . . . , nh−1 = n∗ in the search tree
such that

Πj(n∗) = · · · (`i, Ni)
τi→ (`i, N′

i)
ei→ · · ·

is a counterexample with discrete jumps ei = (`i, gi, ri, `i+1) in which ei was
taken during the time interval τi = [tl,i, tu,i]. Upon refinement of ni, we can
use the information in the above symbolic path not only to identify the set of
discrete successor states which match the path segment accounting for ei but
also to speed up the computation. We enter location ` at local time point 0 and
we are interested in a refined computation for the successor via ei with guard gi
only for the time interval [tl,i, tu,i]. Consequently, we can skip checking whether
gi is satisfied by the current flowpipe segment for time points 0 ≤ t′ < tl,i and
also for time points after tu,i, which may significantly reduce the computational
effort for refinement, depending on the computational effort required to verify a
predicate (intersection and test for emptiness). A similar approach can be used
for verifying the intersection with bad states or for finding an upper bound on
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the number of time successors based on the time interval the current invariant
was satisfied.

Incremental Refinement. From the previous results we can derive that we only
need to validate predicates C during refinement, if the current time interval has a
non-empty intersection with the stored time interval I which over-approximates
the time interval I′ in which C is informative for the analysis. Note that the
relevance of a predicate C during analysis depends on the type of predicate
we are considering (guards, invariants or bad states) as well as on the type
of intersection result (full containment, no full containment but non-empty
intersection, or empty intersection). Our implemented algorithms are capable
of detecting the following types of intersection results for a flowpipe segment Ω
and a predicate C:

• Full containment F: Sat(Ω ∩ C) = Ω.

• Partial containment P: Sat(Ω ∩ C) = Ω′ 6= ∅, Ω′ ⊂ Ω.

• No containment N: Sat(Ω ∩ C) = ∅.

As mentioned above we consider predicates C defining either guards, invariants
or bad states. A predicate C is informative for a flowpipe segment Ω over-
approximating a time interval I if the intersection type for the time interval
I denotes full or no containment. If we know from previous computations
that a condition is either fully satisfied or not satisfied at all for a given time
interval we expect not to get new information when revalidating this information
at a higher refinement level. In contrast to this, the information of partial
containment can be refined—as the time intervals associated with each flowpipe
segment represent an over-approximation of the actual time interval covered,
we can refine stored information (see Figure 7.5). We illustrate this with an
example:

Example 7.5: Event Timing Refinement

Assume a parameter configuration Par0 for which a counterexample
has been detected. The flowpipe segments which over-approximate
the flow for the time interval [0, T] in location ` were computed us-
ing Par0. The flowpipe segments with corresponding time intervals
[t0, t1], [t1, t2], [t2, t3], [t3, t4] (see Figure 7.5) contain states which satisfy
a predicate C. In a refinement, a different configuration Par1 with re-
duced time step size is applied. For the refined flowpipe, only those
segments whose time interval intersects the time intervals [t0, t2] and
[t3, t4] need to be checked against C. The segments before t0 and after t4
might satisfy C but then only due to over-approximation. For the time
interval [t2, t3] we know that all reachable states in the exact segment
satisfy C; though it can happen that the refinement detects partial un-
satisfaction due to over-approximation, for a refinement typically leading
to more precise results we expect this not to happen frequently and save
the effort for these checks.
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0 Tt0 t1 t2 t3 t4

Par0

Par1

I′

Figure 7.5: Incremental refinement of the interval I′ in which some predicate
is satisfied. The intervals where some partial containment is observed (light
petrol) and the ones where full containment is observed (petrol) are color coded.
White intervals correspond to flowpipe segments which do not contain states
satisfying the predicate.

To fully exploit the observed time intervals in which a predicate is informative
for flowpipe segments at different refinement levels, we merge information from
several refinement levels for each predicate of an arbitrary type as follows.

In the following explanation, we use a data structure called timing tree
which is similar to a (non-refinement) search tree but the data stored by the
function State stores a set of real-valued intervals instead of symbolic states.

Initially, before the analysis starts, for each predicate in the model and for
both of the cases F, N, we create a separate timing tree with a single (root)
node containing the empty set of intervals. For example, in the F-tree for
an invariant, we store information on paths and time intervals for which we
surely know that the invariant is satisfied. In the following we use as a running
example the F-tree of an invariant; the other cases are analogous.

Assume that the analysis starts for a given initial state set and we compute
the first flowpipe. At the basic (non-refinement) level, we compute for each
flowpipe segment its intersection type with each relevant predicate (invariant,
guards, bad states). We store this information in the respective timing trees by
adding the time intervals to the root node set.

For example, if the invariant fully contains a flowpipe segment for the time
interval τ (which we call the τ-flowpipe segment at level zero), then we add
τ to the interval set of the F-tree of the invariant. When a counterexample
is detected, and the root node of the search tree gets refined, then we can
reuse this stored information because we know that all states reachable within
the interval τ satisfy the invariant; therefore we refrain from computing the
intersection of the τ-flowpipe segment at level one with the invariant. In general,
for a τ-flowpipe segment the invariant satisfaction can be derived if the union
of the intervals in the root of the F-tree of the invariant contains τ.

The presented approach requires more effort, when the computations happen
after a sequence of discrete jumps. Assume that we compute the flowpipe for a
node n of the search tree with symbolic path Π(n). In that case, the knowledge
that the invariant fully contains a flowpipe segment can be reused only for
another node n′ if the symbolic path of n′ is fully contained in Π(n). We can
assure this, by storing not only the time intervals for which the invariant is
satisfied but also a sequence containing the durations of the flowpipe segments
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from which jumps were taken and the identities of the jumps themselves. This
is stored in the timing tree introduced above.

We formalize the algorithm to add new information to these trees in Algo-
rithm 9. Informally, for a search tree node for which we compute the flowpipe
and detect containment in the invariant for a time interval τ, we extract the
timing and jump information τ0, e0, . . . , τi, ei from the symbolic path of the
node. Starting from the root node of the F-timing tree for the invariant, we
recursively check whether an outgoing edge of the root node is labeled with
τ′

0, e0 such that τ′
0 = τ0. If yes we recursively descend to add the information

in that subtree. To avoid redundant information, if τ0 and τ′
0 are not identical

but have a non-empty intersection, we split cases to their intersection and the
remaining parts. Otherwise, if no intersection of τ0 and τ′

0 is detected, we
create a new child of the root node and label the edge leading to it with τ0, e0,
and descend to its subtree to add the information. When we reach a leaf, we
add the interval τ to its interval set.

We can now use these timing trees to extract timing information for a
predicate, after a symbolic path described by τ0, e0, . . . , τi, ei. To do so, we can
use Algorithm 10, which works as follows. We try to find a set of child nodes of
the root node which together cover the whole time interval τ0 for the discrete
jump e0, that means each of them assures information for a specific part of τ0.
Now we recursively collect information in those subtrees, but since we want
definitive results for the whole τ0, we need to extract information common
to all of them. Concretely this means we need to intersect their individually
assured time durations.

The algorithm to extract information from the timing tree can be executed
concurrently by several threads, as long as no thread modifies the timing tree.
The modification, however, must be mutually exclusive.

Correctness. Assume we compute the flowpipe in a node n of the search tree
with symbolic path Π(n) = (`0, N0)

τ0−→ (`0, N′
0)

e0−→ (`1, N1) · · · (`i, Ni). We
call getIntervals(B,τ0, e0, . . . , τi, ei) to obtain a set of intervals, where B is
the F-tree of the respective invariant. Correctness means that for all concrete
paths in the symbolic path Π(n) and all time points t in any of those intervals,
if we extend the path with the elapse of t time units, then the invariant will be
satisfied. We do not show correctness formally. The proof idea is based on the
fact, that we only add intervals to the timing tree, for which we know invariance
and all other changes to the tree only split symbolic paths into their parts.

Further Remarks. We mention that there are some exceptional cases, for
example, when the invariant is violated, such that not all flowpipe segments
need to be computed at a given level. To remember that no jumps can be
taken from this time point on, we need to add the given time interval to the no
intersection class (N) for all predicates of all types even though the intersection
was not explicitly checked.

If during refinement for a certain time interval we know that no jump
enabledness needs to be checked, theoretically we could also avoid computation
of the flowpipe segments. Instead, we could use a dedicated linear transformation
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Algorithm 9: Adding of informative intervals.
Input: Timing tree B for a certain predicate, sequence τ0, e0, . . . , τi, ei
Output: Set of intervals.
Function addIntervals(B,τ0, e0, . . . , τi, ei, τ)

n := root(B)
if isLeaf(n) then

State(n) := State(n) ∪ {τ}
else if exists n′ ∈ Nodes with (n, n′) ∈ Succ and
Trace(n, n′) = (τ0, e0) then

B′ := subtree(n’)
addIntervals(B′, τ1, e1, . . . , τi, ei, τ)

else if exists n′ ∈ Nodes with (n, n′) ∈ Succ and
Trace(n, n′) = (τ′

0, e0) and τ0 ∩ τ′
0 6= ∅ then

l1 := min(τ0,l , τ′
0,l)

l2 := max(τ0,l , τ′
0,l)

u1 := min(τ0,u, τ′
0,u)

u2 := max(τ0,u, τ′
0,u)

replace the single child n′ of n by three copies nA, nB, nC
(including the subtree below), and label the edges
Trace(n, nA) = ([l1, l2], e0), Trace(n, nB) = ([l2, u1], e0), and
Trace(n, nC) = ([u1, u2], e0).

if [l1, l2] ⊆ τ0 then
addIntervals(subtree(nA), τ1, e1, . . . , τi, ei, τ)

if [l2, u1] ⊆ τ0 then
addIntervals(subtree(nB), τ1, e1, . . . , τi, ei, τ)

if [u1, u2] ⊆ τ0 then
addIntervals(subtree(nC), τ1, e1, . . . , τi, ei, τ)

else
create new child n′ of n with Trace(n, n′) = (τ0, e0).
addIntervals(subtree(n′), τ1, e1, . . . , τi, ei, τ)

Algorithm 10: Extracting informative intervals.
Input: Timing tree B, sequence τ0, e0, . . . , τi, ei
Output: Set of intervals.
Function getIntervals(B,τ0, e0, . . . , τi, ei)

n := root(B)
if isLeaf(n) then

return State(n)
if exists S = {n0, . . . , nk−1} ⊆ {n′ ∈ Nodes | (n, n′) ∈ Succ} such
that τ0 ⊆ ⋃

n′∈S,Trace(n,n′)=(τ,e) τ then
for i = 0, . . . , k − 1 do

Bi := subtree(ni)
Ii :=getIntervals(Bi, τ1, e1, . . . , τi, ei)

return
{⋂

i=0,...,k−1 τ′
i

∣∣ ∀i = 0, . . . , k − 1. τ′
i ∈ Ii

}
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to compute reachability directly for the start of the interval for the next time
point of possible enabledness. However, this requires the computation of
dedicated matrix exponentials, depending on the bridged time duration, which
may not necessarily pay off in terms of running time. We did not implement
this option in HyPro.

As a last remark regarding the implementation, we developed a dedicated
data structure for the efficient insertion and lookup of knowledge regarding
time-dependent predicate satisfaction, without explicitly building the union
respectively intersection of intervals but maintaining information symbolically
by lists of annotated intervals.

7.4 Further Ideas

This section presents further ideas for future work to improve the presented
approach towards partial path refinement and its extensions.

Dynamic Strategies. In the current setup, the strategy with its available
parameter configurations is fixed—not only the order of configurations but the
configurations themselves have to be provided a priori. A small part of the
motivation behind the development of this approach was to move closer towards
a push-button approach for reachability analysis for hybrid systems. Being
able to synthesize a strategy during computation automatically would help to
pursue this goal. As we have several parameters we can tune, automatically
creating a strategy by creating combinations of a set of fixed parameter values
for each parameter can reduce the complexity of strategy creation but does
not necessarily improve the approach. As we cannot give a total order on
the parameters, we can still provide patterns for strategies, for instance, after
having used boxes as a state set representation, using support functions has
been proven to be successful in the past. Additionally, we can refute specific
configurations, for instance, if the state space dimension is large, we can refute
using convex polytopes as a representation since most operations on those
do not scale very well for large state space dimension. On the other hand,
we can also promote configurations; for instance, boxes have been useful for
many existing systems to obtain a first idea of the system’s behavior. Another
example of model-driven strategy-creation are zonotopes as they show excellent
performance for purely continuous systems, as the weakness of zonotopes in
reachability analysis lies in computing intersections with polyhedral guards
which does not occur in purely continuous systems.

Similarly, we can use experience for other parameters as well: a rule of
thumb for choosing a suitable time step size δ suggests to use the reciprocal of
the largest eigenvalue of the matrix describing the system’s dynamics.

Based on the state set representation, we can also make statements about
sequences of configurations. For instance, using boxes after having used support
functions will most likely not increase the precision while using support functions
after boxes might.
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x0

eδAx0

Figure 7.6: An adaption of first segment computation to include the results
from backward analysis for the autonomous dynamics of a linear hybrid system.

Other works involving aggregation and de-aggregation techniques have
been successfully applied [BD17b] and focus on dynamic de-aggregation as a
refinement based on simulation traces of the system.

In-flow Refinement. The refinement method as presented is based on CEGAR-
approaches, i.e., we require a counterexample to be able to refine the abstraction.
Based on the distance of a flowpipe segment Ω to a polyhedral set C specifying
a predicate, for instance a guard, another improvement could adapt the current
analysis settings. This requires an efficient approximation of the Hausdorff-
distance between C and Ω. As mentioned in the introduction to this chapter, an
approach where the authors use box-approximations and evaluate the distance
between the center of the box-shaped flowpipe segment and the predicate has
been presented before [BFG+12].

Adaption of analysis parameters based on the distance of a flowpipe segment
to a particular predicate allows to adjust the current parameter configurations
while computing time successor states, i.e., refinement implemented like this
will result in the partial refinement of time transitions opposed to the method
presented before, which fully refines time transitions.

Spatial Refinement. The results of a flowpipe-construction-based reachability
analysis method do not depend on the utilized parameter configurations only,
but also on the analyzed system. As mentioned in the introduction, approaches
were developed, which starting from the purely discrete components of the
system refine its abstraction by gradually adding dynamics [Nel16]. Instead of
refining the dynamics of a system, we can consider the initial variable valuation
for refinement. A subdivision of the set of initial states might lead to more
precise analysis results. Furthermore, in case a system still cannot be declared
safe, it could be made safe if it is possible to exclude initial regions with
inconclusive verification results.

Backward Analysis. A step away from the refinement approach presented here,
which was based on modifying the parameter configurations for the analysis
would be to add backward-analysis as a refinement step. Since both, forward-
analysis, as well as backward-analysis over-approximate the set of reachable
states, intersecting the results obtained by both methods may lead to more
precise results than obtained by using each method individually. Note that in
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Figure 7.7: Parallelized flowpipe-construction-based reachability analysis in
HyPro. Workers and threads exist in a one-to-one correspondence. Dashed
lines represent data flow. The communication to the global queue happens
in a synchronized way while the thread-local queues can be accessed without
locking.

case the reset function of a discrete jump is not invertible, backward-analysis
cannot give precise results on the discrete predecessor state of that respective
jump. In this case, the whole state space (intersected with the location’s
invariant and the guard) is considered as a predecessor state which most likely
will not aid in reducing over-approximation errors. Note that for autonomous
linear hybrid systems, i.e., systems in which the flow is given as ẋ = Ax it
is possible to adapt the method for computing the first flowpipe segment to
directly include results for backward analysis (see Figure 7.6).

7.5 Parallelization

This section is based on our work [SÁ18b] and may contain excerpts that are
not explicitly marked as citations in the text.

The concept of partial path refinement integrates well into classical flow-
pipe-construction-based reachability analysis as presented before. During the
analysis tasks are created which hold information about symbolic states for
which successors need to be computed. Branching in the search tree which is
caused by modes having several outgoing transitions or the usage of clustering
or no aggregation when processing discrete jumps leads to the creation of
several nodes in the search tree and consequently several tasks as the result of
processing one task. The order in which those tasks are processed is usually
not of importance; it only affects the order in which the search tree is explored
(breadth-first vs. depth-first). As seen before, it may help to prioritize refinement
to avoid spurious counterexamples and to guide the search towards potentially
safety-critical paths. Nonetheless, to verify safety up to a certain bound, all
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paths have to be analyzed regardless of the order2. In our framework, tasks are
stored in a priority queue which implicitly results in a breadth-first exploration
of the search tree.

In this section, we present our approach towards parallelization based on
multi-threading. The tasks are natural units for parallel processing: multiple
threads can implement workers (in a one-to-one correspondence between threads
and workers) processing different tasks in parallel. In the following, we will
illustrate the parallelization of our partial path refinement method (see also
Figure 7.7) and provide details about certain aspects of the implementation
afterward.

Local and Global Queues. As in the sequential case, each worker has a local
task queue to implement refinement task prioritization. Access to these local
queue is restricted to the owning worker, therefore it does not require any
synchronization and is thus expected to be fast. During the analysis, each
worker only communicates with its local queue when scheduling new tasks.

Additionally, for work balancing between the workers, we need a mechanism
to distribute tasks between threads. For this purpose, we use a global task
queue, which can be accessed by all workers in a synchronized fashion. Initially,
the main thread schedules a task for the initial state set (or all initial state
sets, if there are several) of the system and adds it to the global queue. The
thread-local queues are empty.

After the creation of the workers, they compete for the initial task as follows.
When idle, each worker tries first to obtain a task to process from its local task
queue to keep the synchronization overhead as small as possible. Only if its
local queue is empty, the worker tries to obtain a task from the global task
queue, using synchronized access. If the global queue is also empty, the worker
rechecks the global queue regularly, until it is filled or until also all other local
queues are empty, which leads to a synchronized termination of the algorithm.

If a worker processes a task, new tasks will be added to the worker’s local
queue according to enabled discrete jumps. Consequently, without further task
sharing, the subtree under the currently processed node in the search tree will
be analyzed by this worker only.

To allow for work-balancing, workers can move tasks from their local queue
to the global queue. We consider three heuristics for this balancing step, which
are used after each completion of a task: (i) the worker pushes all but one tasks
from its local queue to the global queue; (ii) only when the local queue size is
larger than a certain threshold, tasks exceeding that threshold are moved from
the local to the global queue; (iii) push a certain ratio of tasks from the local
queue to the global queue. We expect that approaches (i) and (iii) will result
in balanced work distribution at higher synchronization costs while approach
(ii) should be better suited to limit these costs but lead to a less balanced
work share. Note that queue balancing happens after the completion of each

2There are some exceptional cases where a scheduled task gets superfluous without being
executed, for instance when switching on aggregation, but this is atypical and we do not
detect these cases.
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task by a worker, i.e., when potential successor tasks have been added to the
thread-local queue.

To compare our implementation, we also consider a different setting, where
only a global queue is present. In this setting, work is inherently well-balanced
but getting new tasks from the queue and adding new tasks to it requires
synchronization for each action. While this setting might inflict more synchro-
nization effort, it is also the case that accessing only the global queue allows for
a more direct work-sharing even during the analysis—in all other configurations
tasks are distributed to the global queue only after the analysis.

Node Synchronization. All workers wi operate on a single shared search tree.
Without path refinement, the workers need to synchronize on the access to
the global queue, but not on search tree nodes: each search tree node n will
be referred to by precisely one task t, which will be processed by exactly one
worker wi. New nodes n′

j will be added to the search tree as a result of the
analysis of wi and those new nodes will be added as child nodes to the current
node n referenced by t. However, this is not the case for path refinement, as
counterexample paths might share a prefix and workers may compete for access
to a specific tree node n during a simultaneous refinement of the shared prefix.
To ensure thread-safety during path refinement, each worker first attempts
to get a lock on the tree node n referenced in the refinement task, and if
successful processes the task referencing n. The lock is released free before
starting to process any other node to avoid deadlocks. The hold-and-wait
property, which requires to keep a lock for a shared ressouce while acquiring a
secondary lock for a further shared ressource, is broken, which is sufficient to
ensure deadlock-freedom.

As a consequence, during refinement in a multi-threaded environment two
workers which refine a path with a shared prefix may take turns in refining said
path, depending on who acquires the lock for a node on the prefix first (see
Example 7.6). Naturally, once a lock is acquired, the respective worker has to
check again whether the current node’s refinement level is below the targeted
level or the node’s level has been increased while waiting for the lock.

Example 7.6: Multi-threaded Refinement

Consider a setup in which two workers w0, w1 perform flowpipe-construc-
tion-based reachability analysis extended by partial path refinement in
a parallelized environment. Assume the following excerpt of the search
tree that represents the current state of the analysis (left). In these
trees, we also want to show which worker processes which node; to avoid
too much information, instead of the state sets, we indicate the worker
in the nodes.
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The two workers w0, w1 both found a potential counterexample in the
subtree below nj respectively nk. The refinement paths share a common
prefix which refers to the node sequence n0, n1, n2, . . . , ni in the search
tree. To start refinement, both workers release the locks on the currently
held nodes if they are refininga. The workers compete for the lock of
the root node n0, which is taken by w0 in this example (right).
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After releasing the lock on n0, w1 may access the node, but can skip
refinement there as the node is already on the desired refinement level
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(left). In the meanwhile w0 has acquired the lock for a subsequent node
n1 on its refinement path.
Note that depending on the work-sharing mechanisms it either will
happen that the first worker to obtain a lock on the shared prefix will
fully refine it locally or both may take turns as in this example (right,
node n2 has been refined by worker w1).

aOtherwise they work non-synchronized at level zero and hold no locks.

7.6 Experimental Results

We have implemented the presented approaches of partial path refinement
together with an extension for the parallelization thereof in our tool prototype
HyDRA [SÁ18c]. In this section, we present experimental results using HyDRA
on a selected set of benchmarks. The results presented in this section were
originally published in our works on partial path refinement [SÁ18a] and on
the parallelization [SÁ18b].

Table 7.1: Parameter settings: Refinement strategies are specified by triplets con-
taining (1) state set representation (box, support functions (sf), convex polytope
in H-representation (hpol)), (2) time step size, (3) aggregation (agg)/clustering
in k clusters (cl.k).

refinement strategy
S0:(box, 10−2, agg) (sf, 10−3, agg) (sf, 10−4, agg)
S1:(box, 10−2, agg) (box, 10−3, agg) (sf, 10−2, agg) (sf, 10−3, agg)
S2:(box, 10−2, agg) (box, 10−3, agg) (sf, 10−2, agg) (sf, 10−4, agg)
S3:(box, 10−1, agg) (sf, 10−3, agg)
S4:(box, 10−1, agg) (hpol, 10−3, agg)
S5:(box, 10−1, noAgg) (box, 10−2, cl.3) (sf, 10−2, cl.3)

To show the general applicability of our approach, we have conducted several
experiments on an implementation of the method presented in Section 7.1.
We have used our implementation to verify the safety of several well-known
benchmarks using different strategies (see Table 7.1). As all benchmarks are
described in detail in Section 4.2, we will only provide a short reminder of
the model and its properties. All experiments were carried on a machine with
4 × 4 GHz Intel Core i7 CPUs and a memory limit of 8 GiB. Results for the
used strategies can be found in Table 7.2.

Benchmark Selection. The following benchmarks from the area of hybrid
systems verification are selected.

The well-known bouncing ball benchmark (Ball) models the height and
velocity of a falling ball bouncing off the ground. The added set of bad states
constrains the height of the ball after the first bounce.
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The 5-D switching system (Sw5) is an artificially created model with five
locations and five variables that shows more complex dynamics and is well-suited
to show the differences in resulting over-approximation errors between different
state set representations. We added a set of bad states in the last location
where the system’s trajectories converge to a certain point.

The navigation benchmark [FI04] models the velocity and position of a
point mass moving through cells on a two-dimensional plane (we used variations
of instances Nav09 and Nav11). Each cell3 exhibits different dynamics that
influence the acceleration of the mass. The goal is to show that a set of good
states can potentially be reached while a set of bad states will always be
avoided (see Figure 7.9). The initial position of the mass is chosen from a set
large enough, such that this benchmark demonstrates non-determinism for the
discrete transitions which results in a more complex search tree.

The platoon benchmark [BKG+09] models a vehicle platoon of three cars
where two controlled cars follow the first one while keeping the distance ei
between each other within a certain threshold (label: Pltn). The vehicles
communicate via radio which breaks down in specific patterns, depending on
the instance of the benchmark. For the evaluation, we chose an instance as also
used in [ABC+17; ABC+18] in which communication between the cars breaks
down and comes up deterministically every five units of time. This benchmark
was chosen, as it unifies a higher dimensional state space with more complex
dynamics.

Strategies. During the development of our approach we tested several strate-
gies with varying parameters (a) the state set representation, (b) the time step
size, and (c) aggregation settings. In general, other parameters (e.g., initial set
splitting) could also be considered, but our prototype currently does not yet
support these. For this evaluation we selected six strategies S0, . . . , S5 which
mostly vary (a) and (b) (see Table 7.1). Changing aggregation settings has
shown to be challenging for the tree update mechanism, but the exponential
blow-up of the number of tree nodes did not render this method useful in
practice. Furthermore, when aggregation is turned off in certain settings, the
most significant precision gain can be observed for boxes while for all other
tested state set representations the effect can be neglected. Note that our
prototype implements the general approach as presented before, where partial
path refinement starts from the root node.

Comparison. We compare our refinement algorithm (1) with a classical ap-
proach where no refinement is performed. To achieve this, we specify only a
single strategy element for our algorithm. We give results for (2) the fasted
successful setting (of the respective strategy), an experienced user would choose,
and for (3) the setting with the highest precision level, a conservative user
would select. The three entries per cell in Table 7.2a show the running times
for our dynamical approach (light petrol), the fastest successful setting and the
conservative approach. Additionally, we have analyzed the resulting search tree

3Cells and locations are in a one-to-one correspondence.
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Figure 7.8: Approximation of the set of reachable states (strategy S2, first two
variables) for the linear switching system (Sw5). The first three configurations
in S2 result in reachable set over-approximations which intersect the set of bad
states (red) in the last location. The finest configuration (dark petrol) allows
to refute the counterexample and declare the system safe.

which is explored during the analysis. The results of this analysis are depicted
in Table 7.2b, where we give the number of nodes in the search tree. For
refinement, we provide the number of nodes for each refinement level separately.

Results. The results obtained during our experimental evaluation let us make
several observations when considering the running times as well as the structure
of the explored search tree.

The results in Table 7.2a were obtained using an implementation where
timing information for discrete jumps was collected and reused during refinement.
This feature allows us to partly compensate for the overhead, which is introduced
as a result of maintaining the search tree. We expect that for benchmarks with
a search tree with only one path, i.e., the models Ball, Sw5, and Pltn, the
optimal setting outperforms our refinement approach. However, we can observe
that the running times can compete with the running times of an optimal
setting which is attributed to the timing information reuse.

When considering the search tree structure for the analyzed models, we
observe that benchmarks which induce a high branching in the search tree, i.e.,
models which have a high level of non-determinism as the models of the naviga-
tion benchmark (Nav) profit from using partial path refinement. For instance,
for Nav09 using the search strategy S1, we observe that large parts of the search
tree already can be verified using the first analysis parameter configuration
in S1. Consequently, those safe nodes do not need to be considered during
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Figure 7.9: Plot of the approximation of the set of reachable states of the
navigation benchmark (Nav09) using partial path refinement (strategy S3, x, y
position of the point mass). The first computations (very light petrol) intersect
the set of bad states (red) while refinement (light petrol) constitutes that all
system trajectories end in the safe cell (green).

refinement. Only six nodes require refinement using the second configuration
of which again only four need a refinement using the third configuration. As
the third configuration is the fastest one which allows verifying Nav09, using an
approach without partial path refinement requires to explore the whole search
tree using this analysis parameter configuration which takes considerably longer
(5.76 s vs. 118 s).

As a side-effect of coarser approximation, we can observe that the search
tree using refinement usually has more nodes than the ones from successful
validation without partial path refinement using a classical approach (Nav09,
S1: 279 vs. 244 nodes). Together with the running times, this confirms our
assumption that putting effort in selective, partial refinement of single branches
pays off in terms of computational effort.

Additionally, the length of the counterexample significantly influences the
outcome of the partial path refinement approach—in the bouncing ball bench-
mark, the set of bad states is reachable after one discrete transition and from
then on never again, i.e., after refining the early spurious counterexample anal-
ysis can be proceeded using a coarse approximation. In contrast to that in the
5-D switching system (Sw5) the set of bad states is reachable only in the last
location in a linear setup (see Figure 4.5b) which causes a refinement of the
whole explored search tree and a recovery to a lower refinement level afterward
is not possible (see Figure 7.8).
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Figure 7.10: Plot of the approximation of the set of reachable states of the
platoon benchmark using partial path refinement (S3, distance first to second
vehicle over time). The first refinement level (very light petrol) intersects the
set of bad states (red). After refinement (light petrol) the counterexample is
refuted and the refinement level is reset. Reducing the refinement level after
successful invalidation of a counterexample causes repeated refinement, as the
bad states are intersected repeatedly.

Stepping back to lower refinement levels can also be counter-productive in
some cases. In the platoon benchmark, stepping back to a lower refinement
level does not provide any advantages, as an intersection with the set of bad
states occurs repeatedly (see Figure 7.10).

Parallelization

In this section, we present experimental results specific to our approach towards
the parallelization of partial path refinement in flowpipe-construction-based
reachability analysis. All experiments were run on a machine with 48 × 2.1 GHz
AMD Opteron CPUs and a memory limit of 8 GiB; the single cores each are
slower than the cores of the machine we used before, but the goal here was to
investigate the effects of parallelization.

Benchmark Selection. For our experiments on parallelization, we have se-
lected benchmarks with a potentially large search tree to be able to quantify
the effects of different work-sharing strategies. The models of the navigation
benchmark (Nav09 and Nav11) are suitable, as the chosen initial set is large
enough to enable multiple discrete transitions in the initial cell. Additionally,
we select the model in which several processes compete for mutually exclusive
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access to a shared resource (Fish). Similar to the other selected benchmarks,
this model naturally exhibits non-determinism and thus induces branching in the
search tree during analysis. In our evaluation, we did not include benchmarks
with little non-deterministic choices. Additionally, our results show that the
overhead caused by synchronization is small (see below) so we can expect little
influence on running times for benchmarks with little branching.

Settings. For our experiments we consider eight different settings (see Ta-
ble 7.3). Even though path refinement is not the main focus of our presented
approach, all eight settings support path refinement as this requires node
synchronization (see Section 7.5).

Each setting specifies a refinement strategy and a work queue balancing
heuristics as before, i.e., as a sequence of triplets, each triplet specifying (1) the
state set representation used, (2) the time step size for flowpipe construction
and (3) settings for aggregation/clustering. The settings are chosen to result in
large branching in the search tree: settings S2, S4–S7 use clustering instead of
full aggregation. Setting S0, S1, and S3 are added for comparison.

To test different queue balancing methods, we did experiments with pushing
all tasks above a fixed threshold from the local queue to the global queue,
but this was far less stable in efficiency than pushing a certain percentage of
the local queue contents, therefore here we include only experiments with the
latter. In Table 7.3, the work queue balancing heuristics specifies which portion
of the local queue is moved to the global queue after the completion of each
task, i.e., 100 % means all but one. At least one task is always left in the
local queue which can directly be processed by the respective worker and thus
reduces synchronization effort for corner-cases, for instance, if only one discrete
successor has been discovered.

Settings S0–S4 differ in their refinement heuristics, but they are all eager in
pushing all but one task from the local to the global queue after the completion
of each task. Contrary, settings S4–S7 share the same refinement heuristics
but they differ in their work balancing method. Notably, setting S7 completely
avoids thread-local queues: every worker operates on the global queue directly.
The difference is that while in all other settings the work distribution takes
place at the end of the flowpipe computation in a batch, S7 pushes single
successor tasks to the global queue during its computations such that idle
workers potentially could start computation earlier. As the experimental results
show, this works surprisingly good, even though the increased synchronization
effort is recognizable.

Results. The running times of our implementation using different settings and
different numbers of threads for parallelization are given in Table 7.4. In general,
we can observe a speed-up when increasing the number of worker threads—we
could achieve a speedup of up to factor 33 (Nav09) which in this case results in
∼ 70.1 % efficiency (efficiency = speedup

#threads ) of the parallelization (Nav11: maximal
factor 30, Fish: maximal factor 25). Furthermore, we notice that the running
times of some instances (e.g., Nav09, S0) stabilize at some point. This behavior
can be caused by several issues: either the work distribution is not well-balanced,
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or the synchronization overhead is too large in comparison to the time it takes
to process a single task. Note that an unbalanced work distribution does not
necessarily result from poor task distribution strategies but may also be caused
by single tasks requiring significantly more running time to be processed in
comparison to the majority of tasks in this setup.

For interpreting the results, it is important to mention that processing
every single task is in general computationally expensive: the time required to
compute a flowpipe is usually long in comparison to the time it takes to acquire
a lock for synchronization and move tasks to the global queue. Consequently,
the running times using one thread in our implementation resemble the running
times of a purely sequential approach. Furthermore, with aggregation/clustering,
the number of generated new tasks is often relatively small as both settings
effectively limit the branching of the induced search tree. For example, for
a deterministic system, a task might generate just a single successor task, in
which case no work balancing would take place at all. This might lead to
insufficient work balancing and explain why for some benchmarks and some
settings involving more workers does not lead to any additional speedup.

To further investigate this, we ran the benchmarks with up to 48 threads on
a machine with 48 × 2.1 GHz AMD Opteron CPUs and a memory limit of 8 GiB.
For benchmark instances such as the navigation benchmark in combination with
settings where aggregation was used (S0, S1, S3) we can observe that the running
times already converge for a low number of threads as there are not enough
tasks created during analysis such that most threads idle. The running times
for these settings do not significantly increase when using more threads which
indicates that our implementation successfully minimizes the synchronization
effort required. An exception is setting S7 on benchmark Nav09, where the
running times increase when using more than eight threads; as this setting only
uses a global queue, the increased need for synchronization is reflected in the
running times.

To investigate the actual work distribution, we collected the number of tasks
processed by each worker thread. Table 7.5a shows the coefficient of variation
(CoV) of these results to allow for statements about variance in the work
distribution. The CoV as a relative measure for variance gives the influence of
the variance of data on the mean in percent. Lower percentages hereby indicate
a lower variance in data—in our case a better work distribution.

We can observe the influence of different queue balancing methods for
benchmarks with settings that produce a lot of tasks (S4–S7) reflected in the
CoV. With increasing number of threads the average number of processed
tasks per worker decreases. When using settings that produce too few tasks,
many worker threads idle, thus increasing the variance of processed tasks per
worker (see e.g., Nav09, S0). As expected, the setting using only a global queue
shows the lowest CoV throughout the experiments as all available tasks are
immediately shared.

Settings with local queues where 100 % of the created tasks are shared are
expected to exhibit a similar CoV as when using a global queue only, however
there are only two differences: firstly, when using a global queue only, tasks
are shared immediately after their creation, whereas in the presence of local
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queues sharing happens after task completion; secondly, 100 % sharing with
local queues does not yield exactly 100 % as one single task is kept for further
processing in a local queue to reduce synchronization. Strategies where a worker
only shares part of its created tasks (S5, S6) show a larger variance, i.e., work is
less equally distributed. With regard to the observed running times, we can
deduce that sharing work comes at a price—even though setting S7 has the
lowest variance, the running times in comparison to settings S4–S6, which share
the same analysis parameters are longer.

Note that a low CoV can also be achieved when many threads are taking
turns in processing a small number of such tasks. Therefore, we also analyzed
the average share of idle time for all threads (see Table 7.5b). We can conclude
that the increased running time for setting S7 indeed can be amounted to
synchronization, as the idle time for the workers is among the lowest ones.

Observed Side-effects. During our experiments, we could observe the search
tree size may vary, depending on the number of used workers and the benchmark
instance. While the search tree size is deterministic in a single-threaded environ-
ment, as the execution order of tasks is deterministic, this does not hold for a
multi-threaded approach. As described in Algorithm 8 we prioritize partial path
refinement to refute a spurious counterexample. Hence, in a single-threaded
environment, path refinement is completed before any other task is processed,
which does not necessarily hold in a multi-threaded environment.
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Table 7.2: Experimental results in s for different strategies. Timeout (to) was
set to 10 min, memout (mo) to 4 GiB, “err” marks numerical errors. Three
results per cell: (1) dynamic refinement (light petrol), (2) fastest successful
setting only, (3) most precise setting.

a) Running times for different strategies in seconds.

Model Strategy
S0 S1 S2 S3 S4 S5

Ball 0.15 0.15 0.15 0.46 1.58 0.21
0.22 0.18 0.18 0.97 3.45 1.71

11.93 0.97 9.90 0.97 3.45 9.47

Nav09 to 5.76 5.09 549.00 err to
to 118.00 118.00 to to mo
to to to to to to

Nav11 to 7.15 7.61 63.40 err 120.00
to 6.40 6.40 395.00 to 130.00
to 395.00 to 395.00 to to

Sw5 2.27 0.49 2.30 0.39 15.31 0.45
2.35 0.38 2.36 0.38 to 0.37
2.35 0.38 2.36 0.38 to 0.37

Pltn 173.00 3.67 3.60 18.70 to 19.16
to 3.48 3.48 18.90 to 18.80
to 18.90 to 18.90 to 18.80

b) Number of nodes in the search tree for different strategies, refinement runs give
the number of nodes on each level.

Model Strategy
S0 S1 S2 S3 S4 S5

Ball 5|2|0 5|2|0|0 5|2|0|0 5|2 5|2 29|4|0
5 5 5 5 5 121
5 5 5 5 5 63

Nav09 to 279|6|4|0 317|17|6|0 549 err to
to 244 244 to to mo
to to to to to to

Nav11 to 45|8|7|0 75|16|7|0 73|11 err 75|4168|0
to 24 24 24 to 4170
to 24 to 24 to to

Sw5 5|5|5 5|5|5|5 5|5|5|5 5|5 5|5 5|64|5
5 5 5 5 to 5
5 5 5 5 to 5

Pltn 5|4|4 5|4|4|0 5|4|4|5 5|4 to 5|4|4
to 5 5 5 to 5
to 5 to 5 to 5
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Table 7.3: Parameter settings: Refinement strategies are lists of configurations,
each configuration specified by a triplet (1) state set representation (box, support
functions (sf)), (2) time step size, (3) aggregation (agg)/clustering in k clusters
(cl.k). Additionally, the last column specifies the queue balancing rate.

refinement strategy work balancing
S0: (box, 10−1, agg) (sf, 10−2, agg) (sf, 10−3, agg) 100 %
S1: (sf, 10−1, agg) (sf, 10−2, agg) 100 %
S2: (sf, 10−1, agg) (sf, 10−2, cl.5) 100 %
S3: (box, 10−1, agg) (box, 10−2, agg) 100 %
S4: (box, 10−1, agg) (box, 10−2, cl.3) 100 %
S5: (box, 10−1, agg) (box, 10−2, cl.3) 10 %
S6: (box, 10−1, agg) (box, 10−2, cl.3) 50 %
S7: (box, 10−1, agg) (box, 10−2, cl.3) global queue

Table 7.4: Running times in seconds for settings S0–S7, timeout (to) = 10 min,
memout (mo) = 8 GiB, † = safety cannot be shown. Running times averaged
over 10 runs. This table was originally published in [SÁ18b].

model setting #threads
1 2 4 8 16 32 48

Nav09

S0 21.99 20.32 20.32 20.40 20.34 20.29 20.35
S1 24.87 15.72 11.87 11.70 11.68 11.70 11.72
S2 to to to to mo mo mo
S3 † † † † † † †
S4 263.80 134.90 69.34 36.87 21.68 16.70 15.63
S5 252.80 127.90 64.79 32.85 17.00 10.41 7.51
S6 263.50 132.80 68.70 36.20 20.90 15.53 13.95
S7 78.52 46.60 32.01 29.52 34.21 42.23 45.03

Nav11

S0 70.49 45.72 45.39 45.42 45.41 45.47 45.44
S1 18.47 9.81 6.15 5.03 4.68 4.49 4.50
S2 to 290.70 146.40 75.53 39.92 22.45 16.50
S3 † † † † † † †
S4 95.73 47.05 24.04 12.21 6.42 3.60 3.13
S5 93.68 45.85 23.28 12.03 6.57 4.02 3.54
S6 92.11 47.16 24.02 12.20 6.62 3.74 3.02
S7 95.92 49.12 25.12 13.03 8.02 6.16 6.49

Fish

S0 40.66 20.46 10.43 5.49 2.96 1.84 1.61
S1 to to to 393.90 201.50 107.20 79.02
S2 to to to 394.30 201.40 107.40 79.07
S3 40.57 20.44 10.47 5.54 2.97 1.82 1.78
S4 40.56 20.45 10.49 5.55 2.97 1.79 1.83
S5 40.63 20.47 10.87 6.76 4.56 3.92 3.96
S6 40.67 20.42 10.47 5.53 2.96 1.84 1.70
S7 42.73 21.79 11.26 6.06 3.68 3.45 3.93
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Table 7.5: Coefficient of variation and idle time in percent for settings S0-S7,
failures are marked (timeout=to, memout=mo). Unsuccessful settings are left
out.

a) Coefficient of variation in percent for the work distribution among worker threads
using settings S0–S7.

bench- setting #threads
mark 2 4 8 16 32 48

Nav09

S0 87.5 85.4 102.2 133.5 197.2 220.6
S1 32.7 43.6 39.0 44.8 92.5 118.4
S4 0.1 0.7 1.0 1.3 1.7 2.2
S5 0.4 1.1 1.8 2.7 4.0 4.9
S6 0.2 0.4 1.0 1.4 1.8 2.2
S7 0.4 0.6 0.9 1.3 2.2 2.7

Nav11

S0 45.3 44.3 70.4 130.8 175.1 215.8
S1 24.0 15.3 29.2 45.1 90.5 121.0
S2 0.4 0.9 1.9 3.6 6.0 7.6
S4 0.9 1.7 10.3 11.0 15.7 13.5
S5 2.2 3.2 5.3 8.8 13.6 16.2
S6 1.4 2.1 2.6 17.3 11.9 12.6
S7 2.5 3.0 3.6 3.3 3.9 5.5

Fish

S0 0.6 3.6 7.6 8.8 11.6 14.3
S1 to to 6.8 8.0 10.0 13.2
S2 to to 7.6 8.5 10.0 12.7
S3 0.8 3.3 7.4 9.3 11.8 13.9
S4 0.8 3.4 7.1 8.0 11.3 13.9
S5 0.3 2.6 14.9 24.8 67.6 99.8
S6 0.9 3.4 8.1 8.4 11.6 14.0
S7 0.5 1.2 2.6 2.9 4.1 4.9

b) Idle time in percent for settings S0–S7.
bench- setting #threads
mark 2 4 8 16 32 48

Nav09

S0 18.72 34.96 36.52 33.50 15.28 12.20
S1 10.63 28.78 36.52 28.29 12.76 10.21
S4 0.04 0.18 0.44 0.85 1.09 1.22
S5 0.16 0.46 1.07 2.30 4.33 6.16
S6 0.05 0.18 0.45 0.86 1.33 1.69
S7 0.11 0.23 0.30 0.41 0.38 0.41

Nav11

S0 7.52 6.05 3.54 2.44 1.36 0.74
S1 4.13 20.95 40.91 47.22 33.84 25.93
S2 0.11 0.51 2.33 5.76 12.10 17.20
S4 0.11 0.44 1.21 3.45 5.79 6.17
S5 0.17 0.64 1.43 3.82 6.62 7.75
S6 0.07 0.46 0.81 3.35 6.35 7.74
S7 0.01 0.30 0.72 1.63 2.67 2.78

Fish

S0 0.32 1.22 3.32 5.94 10.21 12.33
S1 to to 0.44 1.09 2.44 3.70
S2 to to 0.44 1.06 2.65 3.80
S3 0.29 1.43 3.84 5.88 10.45 11.37
S4 0.29 1.19 4.39 6.41 9.90 11.70
S5 0.24 2.00 1.96 7.73 15.30 14.81
S6 0.32 1.29 3.98 6.01 10.42 11.85
S7 0.23 0.67 1.44 2.56 2.83 2.50
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8

Subspace Decomposition

Among other use cases, hybrid systems might contain a digital controller
interacting with a continuous environment. Formal methods to analyze the
discrete controller, i.e., the underlying state transition system induced by the
control program, have been developed for a long time and resulted in many
successful approaches in the program verification community. The analysis of
the continuous counterpart itself, as an independent system, has been worked
on in several research communities, for instance in control engineering where
dynamical systems and their stability are under interest, or in biology, where
the development of a population of specimen can be described as a dynamic
system. Further relevant fields for the analysis of dynamical systems include
physics, chemistry, or electrical engineering.

A hybrid system allows combining both worlds and models for hybrid
systems, thus unifying both behaviors allow putting the controller in the loop
with the plant in a single model. As a consequence, both the model of the plant
and the model of the controller can be verified as a composed system, in which
the controller and the plant interact instead of being analyzed individually.

This chapter is based on our previous work on state space decomposi-
tion [SNÁ17], which was done together with my colleague Johanna Nellen,
and the extensions described in [SWÁ18; Win18; SÁ19]. All excerpts of the
previously mentioned works are used in consent with the co-authors. As a
motivating example, we consider the verification of a PLC-controlled hybrid
plant.

Programmable logic controllers (PLCs) are digital controllers, which are
widely used in industrial applications, for instance in production chains. A PLC
has input and output pins that are connected with the sensors and the actuators
of a plant. Control programs running on a PLC specify the output of the PLC
in dependence of its input readings. These control programs are executed in a
cyclic manner with a fixed cycle time, which is guaranteed by design. In the
first step, the PLC reads the current state of the sensors and the actuators of
the plant and stores this information in input registers. Next, all programs on
the PLC execute in parallel to compute the next output values based on the
last input, and store the results in the corresponding output registers. These
computations might use local variables, stored in local registers. In the last step
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Actuators
Varact

Sensors
Varsen

Physical
quantites

Vardyn

Plant PLC Programs
Input
Varin

Output
Varout

Computation
Varloc

read

write

Figure 8.1: Visualization of the plant-PLC interface and interaction between
controller and plant (Image credit: Johanna Nellen).

of the cycle, the PLC writes the computed output values to the output pins
that are connected to the actuators of the plant. Note that industrial PLCs
guarantee a constant cycle time, i.e., the time it takes to execute one cycle is
known a priori and fixed. General controllers which may not guarantee accurate
cycle times still may be modeled in this way by exchanging the fixed cycle time
by some time interval.

To model a PLC-controlled plant, we introduce variable sets Vardyn, Varact,
and Varsen to represent the state of physical quantities, the actuators, respec-
tively the sensors (see Figure 8.1) of the plant. For the modeling of a controller,
we consider variable sets Varin, Varout, and Varloc to represent the PLC registers
for input, output respectively local variables. Additionally, we introduce one
clock variable for each PLC to account for and ensure the PLC cycle time.

For modeling PLC-controlled plants, we make use of the fact that the PLC
execution between reading the input and writing the output has no influence on
the plant’s state: we model the plant evolution and the concurrent cyclic PLC
execution by toggling between a controller model and a plant model, assuming
that all controller actions are executed instantaneously after the input is read,
the plant evolves for the duration of the PLC cycle, and the output is written at
the end of the cycle. We refer to [Nel16] for more information on the modeling
of PLC-controlled plants.

Related Work. In the past, some approaches for the state space decomposition
for hybrid systems reachability analysis have been developed. In [CS16], the
authors present their method for decomposed reachability analysis for non-linear
systems using Taylor-model flowpipe construction.

A similar approach for linear hybrid systems, which uses fixed decompositions
to two-dimensional subspaces has been presented in [BFF+18]. The authors
exploit efficient algorithms for two-dimensional polyhedra to speed up the
computation in high-dimensional state spaces.

Both works [BFF+18; CS16] use static decompositions, which do not reflect
the structure of the model but which also do not depend on syntactical relations
between variables. On the one hand, this allows a more flexible decomposition;
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on the other hand, the methods make some assumptions about the dynamical
developments in the individual subspaces in order to be able to compute locally.

In the following, we present an approach for the verification of such PLC-
controlled plants, which allows making use of domain-specific knowledge to speed
up the analysis. Section 8.1 presents preliminary knowledge about different
classes of hybrid automata required to understand our approach. The basic idea
is presented in Section 8.2. Section 8.3 shows implications on the design and
implementation of a flowpipe-construction-based reachability analysis method
which implements the presented approach and indicates how to exploit domain-
specific knowledge. We present experimental results in Section 8.4 and a
prospect towards future development and possible improvements in Section 8.5.

8.1 Subclasses of Hybrid Automata

Hybrid automata can be classified into several subclasses, depending on the
dynamics and the type of conditions used (see Table 3.1). In this section, we will
shortly reconsider relevant subclasses that are less expressive than linear hybrid
automaton II (LHA II) and provide further detail on specialized reachability
analysis methods for those subclasses.

Purely Discrete Automata

Technically not hybrid, we still do consider automata where variables are not
subject to any flow, i.e., ẋ = 0 in our analysis, motivated by systems in which
digital controllers along with their control program and program variables are
part of the model. Discrete variables may only be updated when the control
takes a discrete jump, which renders this type of automaton similar to a labeled
state transition system (LSTS). Digital controllers can be modeled as discrete
automata. Analogous to a LSTS in program analysis, the program variables and
thus the state of the controller, respectively the control program only change
discretely, i.e., when taking a discrete transition. We refer to variables subject
to this behavior as discrete variables.

Reachability Analysis. As variable valuations may only be modified when
taking a discrete jump, the reachability analysis of purely discrete automata
does not require flowpipe computation.

Timed Automata

A timed automaton (TA) T allows to model the most simplistic subclass of
hybrid systems, in which all variables c ∈ C act as clocks, i.e., the slope for
all variables is fixed to one. We refer to C as the set of clocks. All conditions,
e.g., guard conditions or invariant conditions compare single clocks ci ∈ C to
constants, i.e., are of the shape ci ∼ k ∈ Q, ∼ ∈ {≤,<,=,>,≥}. The reset
function for discrete jumps allows clocks to be reset to zero only. An example
of a timed automaton is shown in Figure 8.2.
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`0
ẋ = 1
ẏ = 1
x ≤ 2
y ≤ 2

x = 0 y = 0

`1
ẋ = 1
ẏ = 1
x ≤ 4
y ≤ 4

x ≥ 1 ∧ y ≥ 1

x = 1
x′ := 0
y′ := 0

Figure 8.2: Example of a timed automaton with two clocks x, y. Note that
clocks are per definition syntactically independent.

Timed automata have been studied for a long time, and efficient approaches
for computing the set of reachable states for timed automata have been devel-
oped, for example, by computing their region transition system or by using
zone-based abstraction techniques.

Reachability Analysis. The reachable states of a timed automaton can be
computed as a finite union of zones storing sets of states. Zones are represented
by symbolic state sets whose predicates are conjunctions of constraints of the
form xi ∼ c or xi − xj ∼ c with ∼ ∈ {<,≤,=,≥,>} and c ∈ Q. As the
slope for each clock is fixed, zones can be defined by particular types of convex
polytopes in Rd (see Figure 8.3).

Based on the restricted form of the defining constraints, a difference bound
matrix (DBM) [Dil90; BY04] offers an efficient representation for a single zone.
For instance, the zone in Figure 8.3b can be represented by the DBM

D =

0 x y 0 (0,≤) (−1,≤) (−1,≤)
x (4,≤) (0,≤) (1,≤)
y (4,≤) (1,≤) (0,≤)

. (8.1)

Each constraint xi − xj ∼ c is represented by an entry Di,j = (c,∼) in the DBM
where an auxiliary dimension 0 with constant zero value has been introduced to
allow a normalized representation xi − 0 ∼ c of constraints xi ∼ c. Thus, for a
set of n clocks a DBM of size (n + 1)× (n + 1) is required to represent a zone.

To compute the set of reachable states of a timed automaton, flow and jump
successors of the initial state set represented by a DBM can be computed in
an alternating fashion. To compute flow successors of a given zone in a given
location of a timed automaton, we increase all upper bounds in the entries Di,0
for each clock xi to the largest value still allowed by the invariant (which might
be +∞). For instance, the zone describing the set of reachable states of location
`1 of the automaton in Figure 8.2 can be described by the zone depicted in
Figure 8.3b.
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y
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x ≥ 1 x ≤ 2

y ≥ 1

y ≤ 2

y − x ≤ 1

x − y ≤ 1

a) Initial set for a location in a timed
automaton together with flow cone (light
shaded).

y

x

x ≥ 1

x ≤ 4

y ≥ 1

y ≤ 4

y − x ≤ 1

x − y ≤ 1

b) Time successor states with respect to
the location’s invariant.

Figure 8.3: Graphical representation of the time successor computation in
location `1 of the timed automaton in Figure 8.2 together with the constraints
defining the according DBMs.

Example 8.1: Timed Automata Time Successor Computation

The set of states after taking the first discrete jump `0 → `1 (see
Figure 8.3a) can be described by the DBM

D =

0 x y 0 (0,≤) (−1,≤) (−1,≤)
x (2,≤) (0,≤) (1,≤)
y (2,≤) (1,≤) (0,≤)

To represent all time successors, the entries (x, 0) and (y, 0) representing
the constraints x − 0 ≤ 2 and y − 0 ≤ 2 are updated to the largest value
still satisfying the invariant condition for each clock respectively, i.e.,

(x, 0) = min(4, ∞)

(y, 0) = min(4, ∞) .

This results in the DBM in Equation (8.1), which represents all time suc-
cessor states in location `1 after the first discrete jump (see Figure 8.3b).

Similarly, for discrete jumps intersections with guards as well as clock resets
can be represented by adjusting the DBM entries. For further details about
timed automata model checking, we refer to [BK08].
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Constant Derivatives

Hybrid automata with constant derivatives (rectangular automata and LHA I),
i.e., ẋ = c represent a super-class to timed automata and can be seen as timed
automata with skewed clocks. In this work, we refer to this type as linear hybrid
automata I (LHA I). Similar to timed automata, all conditions are represented
as linear real arithmetic constraints. In contrast to timed automata, where
variables only may be reset to zero, variables can be set to arbitrary constants
upon taking a discrete jump. As shown in [HKP+98] unbounded reachability
for this class is already undecidable in case the LHA I is not initialized (see
Definition 3.5); otherwise, a reduction to an equivalent timed automaton is
possible.

Reachability Analysis. Consider a LHA I H and an initial state represented
symbolically by a location ` ∈ Loc(H) and a predicate ϕ being a conjunction of
linear real-arithmetic constraints over the variables of the automaton. From the
given initial set specified by (`, ϕ) the set of reachable states can be described
by a (possibly infinite) union of such symbolic states. Flow successors of states
represented symbolically by (`, ϕ) can be computed by transforming (`, ϕ) to
another symbolic state T+((`, ϕ)). Quantified variables xpre are used in the
transformed formula to represent time predecessor states:

∃t. ∃xpre. t ≥ 0 ∧ ϕ [x/xpre] ∧ Flow(`) [x, x′/xpre, x] ∧ Inv(`) .

Using variable elimination techniques such as Gaussian elimination and Fourier-
Motzkin variable elimination (see Section 2.2), the quantified variables can
be eliminated to compute a description of the time successor states. Discrete
jump successor states are computed in a similar way by quantifying variables
representing the state before the jump.

Example 8.2: Constant Derivatives Flow

Consider a symbolic state σ = (`, ϕ) of a given hybrid automaton over
variables Var = {x} with constant flow ẋ = 4 in location `. Starting
from ϕ = x ∈ [2, 3] we can describe the time successors of σ as

∃t.∃xpre. t ≥ 0 ∧ 2 ≤ xpre ∧ xpre ≤ 3 ∧ x = xpre + 4t .

We can use Gaussian elimination to eliminate xpre and use Fourier-
Motzkin variable elimination to eliminate t:

∃t.∃xpre. t ≥ 0 ∧ 2 ≤ xpre ∧ xpre ≤ 3 ∧ x = xpre + 4t

⇔∃t. t ≥ 0 ∧ 2 ≤ x − 4t ∧ x − 4t ≤ 3

⇔2 ≤ x .

Alternatively to the above approach, we can also apply flowpipe construction
as presented before, however, there is no need for a segmentation: segmenta-
tion was introduced to reduce the over-approximation error due to non-linear
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x

t

ẋ ≤ 2t ẋ ≥ 1t

ẋ ∈ [1, 2]
ṫ = 1

a) Construction of the flow cone for the
dynamics ẋ ∈ [1, 2], ṫ = 1 for unbounded
t.

x

t

b) Adding (Minkowski sum) the cone
for the flow of x and t to the initial set
x ∈ [1, 3] ∧ t = 0 yields the set of time
successors.

Figure 8.4: Example for the construction of time successor state sets for
rectangular hybrid automata.

evolution but linear over-approximation. For constant derivatives the evolu-
tion is linear, thus the whole flowpipe is a linear set. The previous flowpipe
construction is replaced by a more simple approach, starting from the initial
set, computing a cone for the dynamics, computing the Minkowski sum and
building an intersection with the invariant (see Figure 8.4 for an example).

8.2 Syntactic Decomposition

In this section, we show how to make use of the previous observations about
different subclasses of hybrid automata in general reachability analysis for
hybrid automata. Using the previously introduced PLC-controlled plant as a
motivation, we will develop an extension to flowpipe-construction-based reach-
ability analysis as presented in Section 3.4, which exploits the presence of
different types of dynamics in one model.

For practically relevant applications, the current modeling approach, where
LHA II are used to model for instance PLC-controlled plants by hybrid au-
tomata, usually leads to huge models as locations corresponding to steps in the
control program need to be modeled in the hybrid automaton as well. Apart
from potentially many locations in the corresponding hybrid automaton H, the
increased state space dimension poses a serious problem for the verification
of such automata. In our example of a PLC-controlled plant, the variable set
contains variables modeling the plant dynamics Vardyn, the states of sensors and
actuators (Varsen, Varact), the input and output values of the PLC (Varin, Varout),
the local variables used in program executions (Varloc), and clocks for PLC cycle
synchronization. As most state set representations are sensitive to the state
space dimension in terms of computational effort required to perform certain
operations, the resulting high dimensional state space leads to computationally
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expensive operations and heavy memory consumption during reachability anal-
ysis. With the help of our representative example of a PLC-controlled plant,
we identify several system properties that can be exploited, leading to a more
scalable approach for its verification.

Firstly, as the PLC along with its control program is part of the model, the
program variables of the PLC behave in a discrete way (see Section 8.1). The
values for discrete variables do not change dynamically over time but only when
taking discrete jumps from one location in the controller to another controller
location in the composed hybrid automaton. For all discrete variables di the
flow in every location is zero, i.e., ḋi = 0 for all ` ∈ Loc. Additionally, the
variables representing the state of actuators and sensors can be modeled by
discrete variables too, as actuator states change discretely (when writing the
output) and the sensor values are relevant only at the beginning of each cycle
(when reading the plant state). Thus, only the physical quantities modeled in
the plant and the cycle clocks evolve continuously, which coincides with the
natural perception of the modeled system. Finally, computing flowpipes for
clocks and other variables with constant derivatives can usually be done using
specialized approaches instead of using approaches for dynamics specified by
linear ordinary differential equations (ODEs) (see Section 8.1).

In the presented approach, we divide the variable set VarH of the hybrid
automaton H into disjoint subsets VarH = V0, . . . , Vn−1. The decomposition
of VarH is based on properties shared between the variables in Vi, which are
relevant for the reachability analysis of H. Furthermore, we may analyze the
subspaces S0, . . . , Sn induced by the variable subsets V0, . . . , Vn−1 independently.
As we will show later, the decomposition is based on the properties relevant
for classifying a particular subclass of hybrid automata (see Section 8.3). In
the following, we will first describe the general idea of subspace decomposition
informally, then provide a formal description, and finally show the relation to
the subclasses of hybrid automata.

To be able to compute the set of reachable states in one of the subspaces Si,
its variables v ∈ Vi need to be independent from all other variables in the sense
that their continuous as well as discrete evolution is not influenced by other
variables w 6∈ Vi “directly” but only “indirectly” through time as formalized
below. Furthermore, we ensure that the variables v ∈ Vi do not influence
other variables not being part of Vi. Formally, all predicates ϕ ∈ PredVarH
present in the hybrid automaton H must be decomposable to a conjunction
ϕ = ϕ1 ∧ . . . ∧ ϕn−1 of predicates ϕi ∈ PredVi over the respective variable
subsets Vi. Similarly, the same property for jump resets specified by PredX∪X′

and flows given as PredX∪Ẋ needs to hold for the same subspace decomposition.
We refer to this property as syntactic independence.

Definition 8.1: Syntactic Independence

Assume a hybrid automaton H = (Loc, Var, Lab, Flow, Inv, Edge, Init).
A decomposition VarH = V0 ∪ . . . ∪ Vn−1 of the variable set of H into
disjoint subsets is called syntactically independent, if the following holds:
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global state set

disc clock rest

∩Inv subspace segment subspace segment

subspace segment subspace segment

∅

time [0, 0]

time [0, δ]

time [δ, 2δ]

time [2δ, 3δ]

Figure 8.5: Example of a decomposition into a discrete subspace (disc), a timed
subspace (clock) and a linear subspace (rest). Implicit time synchronization
allows to stop computation as soon as the invariant is violated in one subspace
(timed subspace).

• each invariant and each guard in H can be written as a conjunction
ϕ0 ∧ . . . ∧ ϕn−1 with ϕi ∈ PredVi for each i = 0, . . . , n − 1;

• each flow in H can be written as a conjunction ϕ0 ∧ . . . ∧ ϕn−1
with ϕi ∈ PredVi∪V̇i

for each i = 0, . . . , n − 1;

• each reset in H can be written as a conjunction ϕ0 ∧ . . . ∧ ϕn−1
with ϕi ∈ PredVi∪V′

i
for each i = 0, . . . , n − 1.

We also name the variable subsets themselves syntactically independent.

The decomposition of predicates such as invariant or guard conditions implies
temporal synchronization between the different subspaces in the sense that as
soon as one invariant condition is violated in one subspace, the control is forced
to leave the respective decomposed location in all corresponding subspaces.
Correspondingly, a guard is only enabled if it is enabled in all subspaces at the
same time. This is what we described above as “indirectly influenced”. In the
following, we assume that the time step size δ used for the continuous time
successor computation is the same in all decomposed subspaces. Each computed
flowpipe segment over-approximates a certain time interval (see Section 3.4).
We can use the associated time intervals to realize an over-approximative
synchronization between the subspaces as depicted in Figure 8.5.

A decomposition of the variable set VarH into syntactically independent
subsets V0, . . . , Vn−1 allows us to represent (global) state sets (`, N) ⊆ Loc ×
Rd by their projections Ni = N ↓Vi

⊆ R|Vi | to the subspaces Si; we call
(`, N0, . . . , Nn−1) the projective representation of (`, N) with respect to the
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y

x

a) Projective representation of two vari-
ables which are connected results in an
over-approximation in the global state
space (dashed).

y

x

b) Projective representation of two vari-
ables which are not connected. The pro-
jective representation is exact as the vari-
ables are not connected in the global
state space.

Figure 8.6: Projective representation of a two-dimensional space onto two
one-dimensional spaces.

variable decomposition V0, . . . , Vn−1. Note that the projective representation
drops the connection between the subspaces and is therefore over-approximative,
i.e., N ⊆ N0 × · · ·×Nn−1 but in general N 6= N0 × · · ·×Nn−1 (see Figure 8.6a).
Equivalence can only be achieved if state sets are represented by boxes, as
boxes naturally cannot represent dependence between variables. The Cartesian
product of the projections of sets of interval-valued variables, i.e., a box is
the box itself. Therefore the projective representation of boxes is exact (see
Figure 8.6b). We will come back to this property when describing the technical
realization of our approach in Section 8.3.

Once the variables are separated as presented, we modularize the reacha-
bility analysis computation by analyzing the subspaces S0, . . . , Sn−1 induced
by the variable subsets V0, . . . , Vn−1 independently. Intuitively, our goal is to
replace computations in the global, high-dimensional state space by multiple
independent computations in lesser-dimensional subspaces.

Graph-based Decomposition

To compute a syntactically independent decomposition, we use a graph-based
approach in which subspaces are discovered in a bottom-up fashion by iteratively
adding edges representing syntactic dependency. Initially, we assume that all
variables VarH = {x0, . . . , xd−1} of a given hybrid automaton H are syntacti-
cally independent, i.e., we start with a decomposition VarH = V0 ∪ . . . ∪ Vd−1
where Vi = {xi} for all subsets Vi. Traversing the automaton, we can itera-
tively unite sets of variables Vi, Vj whenever one of the conditions for syntactic
independence (see Definition 8.1) between Vi and Vj is violated. During the
process, we create an undirected graph G = (L, E) with a set of nodes L and a
set of edges E. Each location vi ∈ L represents a variable xi of H while an edge
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8.2. Syntactic Decomposition

between two locations vi, vj indicates syntactic dependence of the corresponding
variables xi, xj ∈ VarH. For each location ` in H, we add edges connecting vi
and vj in G whenever xi depends on xj in the flow specification in `, i.e., the
entry Aij in the flow matrix A of ` is non-zero. Similarly, we add edges (vi, vj)
connecting vi and vj in case in the invariant condition Inv(`) =

⋂
hk one of the

hk relates xi and xj. A similar approach can be used for the discrete jumps in
H. For each jump, an edge connecting vi and vj is added whenever xi and xj
are dependent in the guard condition or in case the reset function creates a
dependency for both variables. This is the case when either one of the variables
xi, xj is on the left-hand-side and the other one on the right-hand-side of the
reset assignment, for instance x′i = xj or when both occur on the right-hand-side
for the assignment of an additional (also dependent) variable xk, for example
x′k = xi + xj (transitivity).

After having traversed the whole automaton, the set of locations of each
connected component of the graph G represents the set of variables inducing
a common subspace in H. Note that this approach uses an undirected graph
that is created based on the whole automaton. Consequently, the subspace
decomposition obtained by this procedure thus holds for the whole automaton.
Later on, we present ideas on how to strengthen this decomposition by using
local decompositions instead (see Section 8.5).

Example 8.3: Decomposition

Consider the hybrid automaton H as given below:

`0
ẋ0 = 1

ẋ1 = 2 + x2
ẋ2 = 3
ẋ3 = 2

x0 = 0
x1 = 0
x2 = 0
x3 = 0

`1
ẋ0 = 1
ẋ1 = 4

ẋ2 = x1 + 1
ẋ3 = 1

x0 ≥ 2

x2 = 10

x′0 = 4 · x3

We create the dependency graph G = (L, E) for the variables
x0, x1, x2, x3 ∈ VarH:

x0

x1

x2

x3

x0

x1

x2

x3

x0

x1

x2

x3

Initial graph. Adding edges for
flow in `0 and `1.

Adding edges for
discrete jumps.

From the connected components of G we can derive two syntactically in-
dependent subspaces S0, S1 induced by the variable sets Var0 = {x0, x3}
and Var1 = {x1, x2}.
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8. Subspace Decomposition

8.3 Modular Reachability Analysis

The approach of syntactic decomposition of a hybrid automaton H with variables
VarH into the subspaces S0, . . . , Sn−1 effectively decreases the dimension of the
underlying state space for flowpipe-construction-based reachability analysis
as each subspace is analyzed individually. While more flowpipes need to be
computed, i.e., a separate analysis is performed on each subspace Si, the reduced
dimension of the single subspaces has a positive effect on the running time as
the influence of the state space dimension on the state set operations often is
non-linear. We can observe that each subspace itself can be classified into one of
the hybrid automata subclasses (see Section 8.1). As each subspace is analyzed
individually, this observation enables us to use dedicated analysis methods
depending on the classification of the respective subspace. Note that some of
the subclasses of hybrid automata even naturally induce their own subspace.
For instance, for TA, all clocks naturally are syntactically independent, as their
dynamics is always one and clocks are reset only to zero. In any condition,
i.e., guards or invariants, clocks are only compared to constants. Consequently,
all variables in H that behave like clocks of a timed automaton induce their
separate subspace when H is decomposed.

Not only timed automata but also other subclasses of hybrid automata can
be analyzed with specialized methods, which are usually more efficient than the
flowpipe-construction-based reachability analysis for linear hybrid automata
as described in Section 8.1. Subspace decomposition opens an opportunity to
create a flowpipe-construction-based reachability analysis framework, which
allows increasing the efficiency of the analysis by using the most appropriate
approach available depending on the dynamics of the subspace which is to
be analyzed. In the following, we will use the terms discrete subspace, timed
subspace, LHA I subspace, and LHA II subspace to refer to the type of dynamics
used in a subspace.

To realize this behavior in a full reachability analysis framework, we introduce
the concept of context dependent workers. The general idea of a worker is
identical to the one described in Section 7.2, which means that a worker
processes tasks ti, i.e., computes a single flowpipe based on the information
contained in ti. In contrast to the initial definition of a worker, we extend
this concept by putting the worker into the respective context of the current
subspace, which allows using specialized workers, depending on the subspace
and its dynamics. Following this idea, we can create workers for all relevant
dynamics, for instance one worker type which allows to analyze timed subspaces,
or another worker which implements a method for LHA II as presented before.
In the following, we give technical details on how we realize context-dependent
workers in a modularized way in our tool prototype HyDRA.

Handler-based Workers. Computing a single flowpipe in a specific location
of a hybrid automaton starting from a predefined initial set requires several
steps. We can sub-divide the whole process of computing a flowpipe into
several steps which are almost independent of the actual dynamics or approach
which is used to compute the flowpipe. In classical flowpipe construction for
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Global space: V0

V1 = cl(V0 ∪ eAδV0 ⊕ VA ⊕ VB)

V2 = eAδV1 ⊕ VB

V3 = eAδV2 ⊕ VB

[0, 0]

[0, δ]

[δ, 2δ]

[2δ, 3δ]

Subspace: V0

V0,x = V0 ↓x V0,y = V0 ↓y

V1,x = cl(V0,x ∪ eAxδV0,x ⊕ VA,x ⊕ VB,x) . . .

V2,x = eAxδV1,x ⊕ VB,x . . .

V3,x = eAxδV2,x ⊕ VB,x . . .

[0, 0]

[0, δ]

[δ, 2δ]

[2δ, 3δ]

Figure 8.7: General flowpipe-construction-based reachability analysis for hybrid
systems (top) in comparison to the analysis of a decomposed system (bottom)
using projective representations of state sets in the subspaces x, y resulting from
decomposition.

linear hybrid systems (LHA II), a first flowpipe segment needs to be computed.
Afterward, the following segments are obtained by a recurrence relation (see
Section 3.4). Intersections with guards, invariant conditions and bad states
have to be computed during the analysis for each computed flowpipe segment
and potential discrete jump successor sets have to be computed.

In our implementation, we exploit the modular nature of this approach
towards instantiating modularized workers, which are composed of a collection
of handlers dealing with the respective subtask. The general structure of a
modular worker is given in pseudo-code in Algorithm 11. Note that each
function call in Algorithm 11 delegates the respective task to the handlers
stored in the context. Based on the subspace decomposition for the current
system, each function call is forwarded to a suitable handler for each subspace.

Designing workers in such a modular way allows to easily exchange handlers
dedicated to a specific task in case a new method has been implemented.
Furthermore, this allows us to reuse handlers; for instance, guard intersection
handling for timed, constant, and rectangular contexts is similar and thus can
be done by the same handler.

As handlers maintain an internal state, this enables handlers for different
subspaces to co-exist in the same worker. For instance, a handler implementing
LHA II time successor computation based on time discretization will compute
one flowpipe segment at a time, each over-approximating a time interval [iδ, (i +
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8. Subspace Decomposition

Algorithm 11: Handler-based worker structure.
Input: Task t = (ni, Parj, n∗)
Output: over-approximation of reachable states R

firstSegmentHandler()
invariantHandler()
badStateHandler()
jumpHandler()
while !isFinished() do

timeHandler()
invariantHandler()
badStateHandler()
jumpHandler()

1)δ] of size δ. On the other hand, a time successor handler for a timed subspace
only requires one step to compute all time successor states. By maintaining
an internal state, both handlers may co-exist in the same reachability worker,
the time successor handler for the timed subspace will only compute a set
of reachable states at its first call and otherwise will idle while the worker
for the LHA II flowpipe construction will continue computing its segments.
Another example is depicted in Figure 8.7, where for a discrete subspace the
invariant is tested only once as there is no flow in this subspace while in other
subspaces flowpipe segments are computed. In a handler-based worker, the
handler responsible for validating the invariant in a discrete subspace thus will
skip the computation using its internal state which stores the result obtained
on the first call.

8.4 Examples and Experimental Results

In this section, we will present experimental results obtained using our tool-
prototype HyDRA equipped with state set decomposition methods. The results
on PLC-controlled plants were obtained together with Johanna Nellen who
provided the models and the static decomposition. The original results and
benchmark descriptions were published together in [SNÁ17] and are presented
here in consent with the co-authors. For further details on the decomposition we
refer to [Nel16]. The results on the automatic decomposition using specialized
analysis approaches presented afterward were originally published in [SWÁ18;
SÁ19], where we evaluated our implementation of said approaches in HyDRA.
To focus on the effects of the decomposition, all results were obtained using the
presented decomposition but without partial path refinement or parallelization
from Section 7.5.

PLC-controlled Plants

In this section, we present our first experimental results on syntactic decompo-
sition as published in [SNÁ17] together with Johanna Nellen. The approach
presented in this work is based on a user-defined static decomposition which
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Table 8.1: Model sizes of the benchmarks before and after decomposition.

Model Type #variables #modes #jumps
disc. clocks rest contr. plant

LTnk

original 0 0 12 8 3 34
timed 0 2 10 8 3 34

discrete 9 0 3 8 3 34
timed & discrete 9 2 1 8 3 34

2Tnk

original 0 0 22 20 14 296
timed 0 3 19 20 14 296

discrete 17 0 5 20 14 296
timed & discrete 17 3 2 20 14 296

Thmo

original 0 0 8 6 2 18
timed 0 2 6 6 2 18

discrete 5 0 3 6 2 18
timed & discrete 5 2 1 6 2 18

is provided a priory. The motivation originates from the verification of PLC-
controlled plants where the model contains both the controller and the plant.
Consequently, the state space contains variables of the controller as well as
plant variables where the controller variables do not exhibit dynamic behavior
and thus unnecessarily increase the state space dimension.

Benchmark Selection. To analyze the capabilities of the decomposition ap-
proach, we consider three well-known entry-level benchmarks: the leaking tank
benchmark (LTnk); the two tanks benchmark (2Tnk); and the thermostat bench-
mark (Thmo). Each of the benchmarks is extended by a controller behaving
like a PLC-controller, i.e., in each cycle the controller reads the plant state,
executes a small control-program (here: opening/closing valves or switching
the mode of the thermostat), and writes output which influences the dynamic
behavior of the plant accordingly. Aside from adding modes and transitions for
the controller, we also introduce variables accounting for the program variables
in the controller as well as actuator and sensor states red by the controller and
one clock for cycle synchronization for each introduced PLC-controller to model
cycle time. A schematic overview of the interaction between a general plant
and its controller is depicted in Figure 8.1.

We use a static decomposition where we fix the subspace types for each
variable a priory, i.e., controller variables behave like discrete variables (zero
derivatives), a clock is added to ensure cycle timings and the plant variables
behave as in the original versions of the benchmarks. In our experiments, we
compare the analysis of the benchmarks without variable separation (“original”)
with variable-set-separation-based analysis separating only clocks (“timed”),
only discrete variables (“discrete”), and both (“timed & discrete”). The sizes
in terms of locations, variables, and transitions of the resulting benchmarks
are shown in Table 8.1, where we also provide the dimension of the resulting
subspaces. In the following, we shortly describe the extensions to the benchmarks
behavior caused by the added PLC-controller.
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8. Subspace Decomposition

As in the original version the PLC-equipped version of the leaking tank
benchmark models a leaking water tank, i.e., it has a constant outflow. The
tank can be refilled from an unlimited external resource with a constant inflow
that is larger than the outflow. The added PLC-controller triggers refilling (by
switching a pump on) if a sensor indicates a low water level (h ≤ 6). If the
water level is high (h ≥ 12) the controller stops refilling (switches the pump
off). Adding the controller to the model introduces two variables representing
controller input for low and high water levels, variables for the actuator (pump)
state in the plant and the controller, and a variable to store the controller mode.
Furthermore, a new clock is added to model the PLC cycle time. Besides the
controller, we also model a user that can manually switch the pump on and off
as far as the water level allows it. In our implementation, the user constantly
toggles between the pump states on and off. We analyze the system behavior
over a global time horizon of 40 s using a PLC cycle time of 2 s.

The PLC-equipped version of the two tanks benchmark models the water
levels of two water tanks in a closed system. Each tank has a constant inflow
and a constant outflow. The tanks are connected via pipes, such that the
amount of water outflow of the first tank is equal to the inflow of the second
tank and vice versa. One pump per pipe allows to enable/disable the water
flow. We add a PLC-controller to the two tank system that controls the pumps.
A pump is switched off if the water level of the source tank is low (h ≤ 8) or
if the water level of the target tank is high (h ≥ 32). Each time a pump is
switched off by the controller, the other pump is switched on to balance the
water levels in the tanks. The introduction of the controller adds variables to
model sensing low and high water levels of both tanks and variables to model
the actuator (pump) states in the plant and the controller. Moreover, we add a
variable to store the controller mode and a new clock to model the PLC cycle
time. Again, we model a user who switches the pumps manually on or off as
far as the water levels allow it. We implemented a user that toggles the state of
each pump in each PLC cycle. The global time horizon and a PLC cycle time
were set to 20 s respectively 1 s.

The third extended benchmark is a variant of the thermostat benchmark,
where a room heater with a thermostat controller is modeled. Initially, the
temperature is t = 20 ◦C and the heater is on. The controller keeps the
temperature t between 16 ◦C and 24 ◦C. The heater is switched off if the
temperature rises above 23 ◦C and it is switched on at a temperature below
18 ◦C. Adding a controller to the model introduces new variables for the low and
high temperature sensors in the controller, a variable for the actuator (heater)
state in the plant and the controller, and a variable to store the controller mode.
Additionally, we introduce a new clock for the cycle time of the PLC. The global
time horizon is 10 s and the PLC cycle time is 0.5 s.

Results. All computations were carried out on a machine with 4 × 4 GHz
Intel Core i7 CPUs and a memory limit of 8 GiB. We used the time step size
δ = 0.01 and an unlimited jump depth. To be able to express a global time
horizon, each model is equipped with a global clock and according invariant
constraints. The running times can be found in Table 8.2a, the number of
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Table 8.2: Benchmark results for different separation set-ups. Running times
are in seconds, time-out (to) was 20 min, the second table lists the number of
flowpipes computed.

a) Running times in seconds.
HyPro SpaceEx

Model Rep. Agg original timed disc. timed & disc. original

LTnk

box agg 2.70 2.08 1.06 1.13 3.67
box none 2.62 2.09 1.06 1.13 3.82
sf agg to to 161.12 37.03 448.30
sf none to 1044.97 19.49 5.84 444.82

2Tnk

box agg 4.39 2.60 0.97 1.15 5.49
box none 4.46 2.68 1.02 1.16 5.53
sf agg to to 900.11 329.80 to
sf none to to 35.04 14.64 to

Thmo

box agg 0.07 0.09 0.06 0.06 0.57
box none 0.11 0.09 0.06 0.06 0.57
sf agg 35.87 22.69 1.17 0.29 9.89
sf none 30.41 20.19 1.18 0.30 9.91

b) Number of computed flowpipes.
HyPro SpaceEx

Model Rep. Agg original timed disc. timed & disc. original

LTnk

box agg 662 662 662 662 200
box none 662 662 662 662 200
sf agg to to 662 662 425
sf none to 662 662 662 425

2Tnk

box agg 470 470 470 470 195
box none 470 470 470 470 195
sf agg to to 470 470 to
sf none to to 470 470 to

Thmo

box agg 95 95 95 95 95
box none 95 95 95 95 95
sf agg 95 95 95 95 84
sf none 95 95 95 95 84

computed flowpipes is shown in Table 8.2b. We have compared our approach to
the tool SpaceEx (version 0.9.8f) using a similar configuration for the analysis.
In our tool, we used boxes and support functions (with an octagonal template)
to represent state sets, whereas in SpaceEx we used support functions with four
and eight directions, as SpaceEx does not support explicit box representations.
Furthermore, SpaceEx maintains a fixed-point detection method that our
implementation does not feature. For the leaking tank and the two tanks
benchmarks this affects the results as both benchmarks exhibit branching of
paths during the execution where the branches can be merged later during the
analysis, i.e., it suffices to analyze one of the branches after said merging point.
Methods implementing fixed-point detection can recognize this, while otherwise
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Figure 8.8: Results on the thermostat benchmark using a support function
representation (octagonal template). The plot shows the temperature over
time for SpaceEx (very light petrol), HyPro using either no or only discrete
variable separation (which have the same precision and are both colored in light
petrol), and HyPro with discrete variable- and clock-separation (dark petrol).

both branches which are identical after the merging point will be fully analyzed.
This is reflected in the number of computed flowpipes (see Table 8.2b).

A further difference is that we may use different state set representations for
the separate subspaces in HyPro: in our case, we use boxes (box) for clocks
and discrete variables and only vary the representation for the plant variables
between boxes (box) and support functions (sf).

From the results in Table 8.2a, we can see that subspace decomposition has
a significant effect on the running times as a result of the lower dimension in the
subspaces. On the other hand, as mentioned before subspace decomposition may
introduce additional over-approximation errors as segments of different subspaces
are only implicitly connected via the time interval they over-approximate. We
can observe this behavior in Figures 8.8 and 8.9, where we show plots for leaking
tank and thermostat.

The observed speed-up due to the discrete variable separation is in general
larger than the influence of a clock separation, as in our benchmarks the discrete
variables outnumber the clocks. Furthermore, this implementation already skips
repeated tests for guards and invariant conditions on discrete variables as they
do not change over time. Nonetheless, a separation of clocks already shows a
speed-up of about 30 %. As mentioned before, we used boxes as a state set
representation for the set of discrete variables, which does not introduce any
further over-approximation error, as the discrete variables themselves are all

192



8.4. Examples and Experimental Results

5

6

7

8

9

10

11

12

13

14

15

0 5 10 15 20 25 30 35 40

Figure 8.9: Plotted approximation of the set of reachable states (water-level over
time) of the PLC-variant of the leaking tank system (LTnk) using state space
decomposition on clocks and discrete variables (dark petrol), no decomposition
or decomposition on discrete variables only (petrol) and results obtained using
SpaceEx (very light petrol). All results were obtained using δ = 0.01, full
aggregation and support functions with an octagonal template.

syntactically independent. We can observe that using boxes as a state set
representation, our implementation outperforms SpaceEx (even when a lot
more flowpipes are computed) in terms of running time, which is expected,
as boxes in general require less computational effort than support functions
(evaluated in four directions) in reachability analysis.

In HyPro, aggregation causes longer running times because in the cur-
rent implementation aggregation is realized by a conversion of the single sets
(which are to be aggregated) to polytopes, which is computationally expensive,
especially in higher dimensions.

Automated Subspace Decomposition

In this section, we present experimental results obtained by an extension of
the previous method by automated detection of subspaces as presented in
Section 8.2. Furthermore, we evaluate the usage of specialized approaches
towards the reachability analysis of specific subclasses of hybrid automata
such as timed- and rectangular automata. The following results were originally
published in [SWÁ18; SÁ19] and are presented here with the consent of the
co-authors.
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Table 8.3: Running times in seconds for automated decomposition, time out
(to) was set to 20 min, models which could not be verified are marked with “†”.

a) Running times for benchmark instances with non-rectangular subspaces. The
upper part shows results for benchmarks which are not decomposable (Ball, Sw5)
and the lower part shows running times for decomposable models. This table was
originally published in [SWÁ18].

Model

box box sf sf
δ = .01 δ = .001 δ = .01 δ = .001

no dec. dec. no dec. dec. no dec. dec. no dec. dec.

Ball † † 0.21 0.21 0.17 0.17 0.85 0.81
Sw5 † † † † † † 0.32 0.32

Fish 5.21 9.68 59.20 110.00 to 27.30 to to
Pltn † † † † 3.21 1.78 19.80 to
Rods 0.82 0.94 7.78 9.11 38.40 7.69 to to
2Tnk 0.98 1.37 5.84 11.50 to 1.22 to 8.78

b) Running times for benchmark instances with rectangular subspaces.
Model rectangular

Fish R 20
5var_system 19.40

Benchmark Selection. To test the influence of automated decomposition on
further examples, we have selected a set of commonly known benchmarks for
evaluation. Among them the bouncing ball (Ball) , an instance of Fisher’s
mutual exclusion protocol (Fish), the model of a vehicle platoon (Pltn), the
simplified model of a temperature control of a reactor (Rods), an artificial
5D linear switching system (Sw5), and a model of two leaking tanks with a
controlled inflow (2Tnk). As before, all experiments were carried on a machine
with 4 × 4 GHz Intel Core i7 CPUs and a memory limit of 8 GiB and a timeout
(to) of 10 min. The resulting running times for our experiments can be found
in Table 8.3a.

Due to the lack of published benchmarks for rectangular automata, we
used an artificial model with five variables (5var_system) taken from [CÁF11].
Furthermore, we created an equivalent instance of Fish using a rectangular
automaton model to test our approach (Fish R), as the original dynamics are
constant and thus may be expressed by point-intervals. The running times for
those experiments can be found in Table 8.3b.

Settings. The chosen analysis parameter configurations vary the state set
representation between boxes (box) and support functions (sf) and the time
step size between δ = 0.01 and δ = 0.001. All settings used aggregation (agg)
for the discrete jump successor computation. As before, these settings are used
for the analysis of the LHA II automata and their decomposition. Note that
we use dedicated methods for the analysis of timed subspaces as presented in
Section 8.1, which do not comply with these settings as they do not use time
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`0
ẋ ∈ [4.5, 6]

ẏ = 3
ż = 1

x ∈ [0, 100]
y ∈ [0, 50]

x = 0
y = 0
z = 0

`1
ẋ ∈ [−10,−4]

ẏ = 10
ż = 1

x ∈ [50, 100]
y ∈ [50, 100]

x ∈ [50, 100]
y = 50

Figure 8.10: Small toy example (toy) to test the decomposition of mixed-
dynamics hybrid automata.

discretization and in our case operate on DBMs as a state set representation.
Configurations denoted by “dec.” use the presented approach of graph-based
subspace decomposition while configurations marked with “no dec.” denote the
classical approach without decomposition. As before we mark configurations
that could not prove safety with “†” and configurations where the analysis
exceeded the time limit by “to”.

Results. The benchmark instances Fish (4×1), Pltn (2×1, 1×10), Rods (3×1)
and 2Tnk (10×1, 6×2) can be decomposed into subspaces as indicated in the
brackets (number of sets Vi × |Vi|) while Ball and Sw5 are not decomposable.
The rectangular version Fish R is decomposable into subspaces of dimension 1×3
and 1×1 where the first subspace is rectangular. The state set representation
for the analysis of rectangular subspaces is fixed (see Section 8.1) to polytopes
in H-representation, i.e., state sets are described as a conjunction of linear
inequalities. As shown before reachability analysis methods for rectangular
automata do not use time discretization as the set of reachable states can be
computed in one step per location using logical formulas as state set repre-
sentations and Fourier-Motzkin variable elimination techniques. Consequently,
we do consider neither time step size nor state set representation as analysis
parameters for this approach.

We can observe that the effect on running times is the largest when using
support functions. The reason for this lies in the complexity of operations on
support functions in comparison to the overhead introduced when computing
a subspace decomposition. The most crucial operation, sampling the support,
highly depends on the dimension of the state space, such that the speed-up
resulting from multiple, but lower-dimensional state spaces compensates for the
decomposition overhead. Even small reduction, as for instance in the platoon
benchmark (two dimensions) is noticeable, the decomposition of Fish into
one-dimensional subspaces allows to obtain results while the analysis using the
original four-dimensional state space exceeds the time limit. Note that in the
non-rectangular Fisher-model, the decomposed subspaces all require the usage
of the linear context (LHA II) while the separated one-dimensional subspaces in
the platoon-model can both be computed using a timed context. The subspaces
in the two tanks benchmark (2Tnk) are mostly of discrete nature, which explains
the huge speed-up when using support functions. Note that the results presented
in Table 8.3a were obtained using a more evolved version of HyPro to represent
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a) First segments for Fish using LHA II
reachability analysis methods (δ = 0.1).
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b) Excerpt from reachable set for the
rectangular variant of Fish.

Figure 8.11: Plots of the computed set of reachable states for the first location
in Fish using different analysis methods.

support functions (see Section 6.4) which had a considerable impact on the
running times on common instances (2Tnk) as well.

The observed behavior when using boxes together with subspace decom-
position differs significantly with respect to running times in comparison to
the case where support functions were used. In general, boxes are among the
fastest state set representations available such that the overhead introduced by
decomposition as well as the overhead caused by instantiating multiple handlers
computing flowpipes instead of one single handler is noticeable and explains
the increased running times.

The analysis results obtained for the rectangular version of Fish give longer
running times for the analysis than when using boxes as a state set representation
for the non-rectangular version. However, the state sets can be computed
precisely when using the analysis method dedicated to rectangular automata,
which is not possible when using LHA II analysis methods in the non-rectangular
version (see Figure 8.11).

The model of 5var_system could be verified for one jump only; when in-
creasing the jump limit, the memory limit was exceeded. This can be explained
by the repeated application of Fourier-Motzkin variable elimination (see Sec-
tion 2.2), which in the worst case introduces quadratically many new constraints
when eliminating a variable. We expect that adding heuristics to reduce the
number of redundant constraints during the elimination along with redundancy
removal after the variable elimination may improve running times and memory
consumption.
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8.5 Future Work

In this section, we will present some ideas on future work and potential extensions
of the method presented.

Strong Decomposition. In its current state, a subspace decomposition D
using syntactic independence is computed based on the whole model of a hybrid
system. Consequently, if two variables vi and vj are syntactically dependent in
one location ` ∈ Loc, they will be assigned to the same subspace in D.

Using a local decomposition on a per-location basis which considers the
local flow, as well as invariant conditions and guards on outgoing jumps, could
result in a more versatile decomposition using stronger, local criteria for variable
independence. Consequently, if the decomposition D = V0, . . . , Vn−1 in some
location ` is different from the computed decomposition D′ = V′

0, . . . , Vm−1
for a different location `′, additional effort is required when taking a discrete
jump e ∈ Edge from ` to `′. The projective representation for each subspace S′

i
induced by the variable sets V′

i in decomposition D′ needs to be recomputed
from the discrete successor states according to the current decomposition D.
When the decomposition changes, we can build the Cartesian product of the
subspace representations and project this set from the global state space to the
new subspaces in the next decomposition.

Decomposed Workers. In the current setup, each context maintains a collec-
tion of workers that process a task, i.e., compute time- and discrete successor
states simultaneously in all induced subspaces. Following the relation between
the variable set decomposition and the parallel composition of hybrid automata,
we can also analyze different subspaces independently from each other (similar
to ideas presented in Section 5.8) in different tasks. As a result, workers may
be decomposed and even operate in parallel as presented in Section 7.5. This
requires a more involved task handling framework. Tasks may now depend
on each other, for instance if the guard condition for some discrete transition
e = (`, g, r, `′) contains constraints g which need to be handled in more than
one subspace, this dependency between the subspaces needs to be taken to the
task-level. Consequently, potential successor tasks resulting from taking e can
only be created if all subspaces which are relevant for validating g and applying
r agree on taking e during the same period of (execution) time (see Figure 8.7).
Similarly, tasks need to synchronize on invariants—to avoid too much overhead
it might be advisable to compute as many time successor states as possible per
subspace individually in one location and afterward synchronize on the duration
the individual invariant constraints were satisfied in the subspaces. This is
analogous to the method presented, only the analysis of different subspaces can
be done in several worker-threads in parallel.

Decomposition Criteria. In this work, we focus on variable set decomposi-
tion based on syntactic independence. Recently other approaches with other
decomposition criteria have been presented [BFF+18]. In their work, the
authors ignore the syntactic dependence of variables and compute a strict
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2D-decomposition of a given system using suitable over-approximations of state
sets for dependent variables in different subspaces.

A different way of decomposing a hybrid automaton which is not based on
syntactic independence (see Definition 8.1) is by using an eigenvalue decomposi-
tion of the matrix A defining the flow of a location `. For details on eigenvalue
decompositions, we point the interested reader to [HS74] which provides a very
intuitive introduction and will now limit ourselves to sketch the idea of this
approach.

For a given flow matrix A ∈ Rn×n describing the dynamics ẋ = Ax, the
eigenvalue decomposition of A into three matrices A = QΛQ−1 allows to
decompose the system of n linear ODEs into n independent linear differential
equations, i.e., the resulting system is decoupled after decomposition. This
has the advantage that the matrix Λ, which is used to describe the flow has
a diagonal form. The solution for each of the linear differential equations is a
univariate exponential function for which the approximation error by a convex
set can be determined more easily. Our preliminary work [Haf18] indicates the
general applicability but also shows that there are open problems that need to
be addressed before we can develop an automated method.

To be able to use eigenvalue decomposition, the matrix A describing the
dynamics needs to be diagonalizable. If this is not the case, small perturbations
applied to A could be used to obtain a diagonalizable matrix. However, a
robustness analysis is required afterward to be able to make statements about
the original dynamics. Furthermore, since the decomposition depends on A,
similar to the proposal of a strong decomposition (see above), a decomposition
is only local for each location and needs to be computed for each location.

Decomposition in Refinement Strategies. Currently, the implementation
provides decomposition separated from the other contributions. A promising
idea is to embed this decomposition approach into the partial path refinement
method as a special analysis method in parameter configurations. This way,
the speed-up could be well exploited and in case the over-approximation that
it introduces hinders verification, the next refinement level could switch off
decomposition. It would even be possible a partial path refinement method inside
subspaces. Additionally, parallelization could also be used for the refinement
part, additionally to parallel computations in the subspaces.
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Conclusion

This work presents results on hybrid systems safety verification using flowpipe-
construction-based reachability analysis obtained during the past years. Starting
from fundamental concepts such as how to represent sets up to higher-level
extensions of state of the art reachability analysis methods we have provided
several contributions to the research community.

Various state set representations have been considered in flowpipe-con-
struction-based reachability analysis over the past years ranging from boxes
over convex polytopes to support functions. Our contribution, the C++-library
HyPro collects many of those commonly used representations under a unified
interface and simplifies the usage in flowpipe-construction-based reachability
analysis for tool developers. While our collection is not complete, experimental
results have indicated that HyPro already provides a basis for answering one
of our initial questions: “How can we efficiently represent state sets?”.

Following this development, we were able to successfully exploit the diversity
of HyPro by presenting a generalized CEGAR-based approach for partial
path refinement during the analysis and a parallelization thereof. The obtained
contributions may provide one answer to the questions on how to incorporate
different state set representations in a scalable flowpipe-construction-based reach-
ability analysis method. Not only does this approach increase the effectiveness
of reachability analysis approaches, but it also paves the way towards more
user-friendly tools that do not require expert knowledge for their application.

A different path of development starting from HyPro was implemented by
our approach towards state space decomposition based on syntactic indepen-
dence and the automation thereof. Motivated by industrial applications, we
have shown that the problem of hybrid systems safety verification in real-world
application has many layers to consider, ranging from efficient analysis methods
towards the effective usage of domain-specific knowledge.

We are aware that the journey is not over yet—in this work we have presented
our ideas and approaches which are all publicly available in HyPro and hope
that this work may serve as a stepping stone for other researchers and promising
future development. We have already given detailed information on future ideas
to improve certain aspects of our methods in the respective chapters and will
confine ourselves to provide a more general prospect here.
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9. Conclusion

Apart from safety, also criteria such as robustness and stability of a system
are of interest for developers in industry and academia. Methods from control
engineering in which purely continuous (dynamic) systems are analyzed have
been used for many years but less prominently used for hybrid systems as well.
In our option both communities can profit from a vivid exchange of approaches
which is why this can be a promising direction for future development.

Another interesting direction aims at improving usability and the general
applicability of the developed methods to make research contributions available
for industry as well. Work in this direction may improve rapid prototyping
techniques by supporting further programming languages, or to make approaches
available to the broad public by moving closer towards push-button approaches.

Recent advances in the analysis and verification of probabilistic systems
have put this area of research more into the spotlight. Extensions towards
probabilistic hybrid systems and the analysis thereof are currently under in-
vestigation and development in this area may bridge the gap between the two
areas leading to further interesting development.
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aggregation, 48, 129, 142, 144

B

bad state, 40
bounding hyperplane, 20, 99, 101
box, 81, 184

C

clock, 37, 177, 186
clustering, 48
cone, 25
conical hull, 25
constraint, 20

linear constraint, 20, 21
control mode, 32, see location
convex, 24
convex closure, 77, 80
convex hull, 24f, 91
convex polytope, 91

H-representation , 91
V-representation , 91
simplex, 25, 125

D

difference bound matrix, 37, 178f, 195

dilation, 79, see Minkowski sum
discrete variable, 177
dot product, 17
dynamic system, 31, 42

coupled, 39

E

edge, 25
ellipsoid, 122
erosion, 79, see Minkowski difference
extreme point, 25, see vertex

F

face, 25
facet, 25
facet enumeration, 124
fan, 26

normal fan, 26, 88, 101
flowpipe, 34
Fourier-Motzkin variable elimination,

21, 180

G

Gaussian elimination, 21, 180
gift wrapping, 125, see Graham’s scan
Graham’s scan, 125, see convex hull

H

half-space, 20
Hausdorff distance, 44
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hybrid automaton, 33
discrete transition, 32, 34

guard, 32, 33
reset, 32, 33

flow, 33
initialized, 38, 180
linear hybrid automaton I, 39,

70, 180
linear hybrid automaton II, 39,

46, 177, 181, 187
parallel composition, 36
rectangular automaton, 38
timed automaton, 37, 177, 186

hybrid system, 31
linear hybrid system, 42

hyperplane, 23

I

identity matrix, 18
initial state, 34
interval, 27

intersection, 28
interval arithmetic, 28
point-interval, 28
union, 28

J

Jarvis-March, 125
jump, 32, see discrete transition

L

line, 23
linear polynomial, 19
linear transformation, 18
linearly dependent, 17
location, 32, 33

invariant, 33, 45

M

matrix, 17
rank, 18, 125
transpose, 17

O

oriented rectangular hull, 128

origin, 16
orthogonal, 17
orthogonal polyhedron, 121

P

parameter configuration, 47, 129,
141, 142

jump depth, 41
time step size, 41, 129, 142, 144

partial path refinement, 141, 142, 159
path, 35

counterexample, 36, 141
duration, 35
initial path, 35
length, 35
time transition, 32, 34

plane, 23
point, 16, 23
principal component analysis, 120,

128, 129
projection, 19, 23

R

reachability analysis, 32, 40, 42
refinement level, 142
refinement task, 147
region transition system, 37, 178
ridge, 25

S

search strategy, 142
search tree, 129, 130, 143, 144

completed function, 130, 144
state function, 130, 144
trace function, 130, 144

solution set, 20
state, 32f, 48
state set, 33, 34
state set representation, 46, 48, 75

affine transformation, 79
intersection, 77
Minkowski difference, 79
Minkowski sum, 26, 45, 79
union, 77

support function, 104
operation tree, 105
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supporting hyperplane, 104
symbolic path, 36
symbolic state, 33
syntactic independence, 182

T

task, 131, 147, 159
task queue, 148f, 160

Taylor model, 121
template, 103, 127
time convergent, 35, 48, 49
time divergent, 35, 49
time horizon, 41

U

univariate, 19

V

variable, 32
vector, 16

column vector, 16, 17, 18
row vector, 16, 17, 18

vertex, 25, 91
vertex enumeration, 93, 124

W

worker, 131, 160

Z

Zeno behavior, 48
zonotope, 118

zonotope order, 103, 118
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