
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-023-00707-0

GENERAL

Regular

On the applicability of hybrid systems safety verification
tools from the automotive perspective

Stefan Schupp1 · Erika Ábrahám1 · Md Tawhid Bin Waez2 · Thomas Rambow2 · Zeng Qiu2

Accepted: 30 May 2023
© The Author(s) 2023

Abstract
Traditionally, extensive vehicle testing is applied to assure the robustness and safety of automotive systems. This approach is
highly challenged by increasing system complexity. Formal verification lends a powerful framework for model-based safety
assurance, but due to the mixed discrete–continuous behavior of automotive systems, traditional tools for discrete program
verification are helpful but not sufficient.

In academia, during the last two decades new approaches arose for the formal verification of such mixed discrete-continuous
systems. However, the industry is not fully aware of this development, the tools are seldom tried and their applicability is not
well examined. In a Ford–RWTH research alliance project, we aimed at evaluating the potential of knowledge and technology
transfer in this area.

This paper has two main objectives. Firstly, we want to report on the state-of-the-art in the above-mentioned academic
development in a generally understandable form, targeted to interested potential users. Secondly, we want to share our
observations after testing different available tools for their applicability and usability in the automotive sector and as a
conclusion devise some recommendations.

Keywords Hybrid systems · Reachability analysis · Formal methods · Safety verification

1 Introduction

Safety is critical for automotive industry. However, the com-
plexity of automotive systems puts serious challenges on
their safety assurance. The increasing usage of digital con-
trollers and software for driving assistance and autonomous
functionalities poses high demands on safety verification.
While testing-based approaches may provide intuition on
the system behavior and allow deducing system properties,
these methods cannot provide guarantees as rigorous safety
verification can provide.

Formal methods for providing mathematically rigorous
guarantees of certain system properties have a long history
in computer science, mostly in academic contexts. Over the
recent years, one can observe an increased usage of formal
methods also in the automotive context [33, 35, 36].

A group of researchers from Ford Motor Company and
RWTH Aachen University demonstrated (by applying on

an open-loop discrete next-generation control software) that
formal verification for discrete systems is capable of finding
issues that have not been detected in standard automotive
model-in-the-loop (MIL) testing and software-in-the-loop
(SIL) testing, and thus that formal specification and veri-
fication has the potential to greatly improve the quality of
products [15, 16, 37].

That success motivated us to investigate further into the
verification of closed-loop requirements for automotive con-
trol software. The usage of digital controllers in a continuous
environment has resulted in the demand for the verification
of so-called hybrid systems, where the word hybrid refers to
their mixed discrete–continuous nature. Different automated
formal verification techniques for safety properties (“some-
thing bad never happens”) of hybrid systems have been pro-
posed in academia, based on different frameworks. These
techniques can be used to analyze different types of systems,
using fully automated or interactive methods, considering
executions of arbitrary length or executions restricted to a
bounded horizon, computing exact or overapproximative re-
sults.

Unlike any other industry, both safety assurance and ex-
treme cost-effectiveness are key requirements for business
survivability in automotive product development. However,

� S. Schupp
stefan.schupp@cs.rwth-aachen.de

1 RWTH Aachen University, Aachen, Germany
2 Ford Motor Company, Dearborn, MI, USA

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00707-0&domain=pdf
mailto:stefan.schupp@cs.rwth-aachen.de

S. Schupp et al.

Fig. 1 Evaluation process stages and challenges

due to the size and complexity of automotive systems, for-
mal methods for the analysis of even only discrete systems
are typically applied at unit level but not yet at system level,
where hybrid behavior is present. Stronger than in academic
research, in automotive product development the criterion
of usability is almost as critical as analytical capabilities. In
order to understand whether the academic methods and tools
for the formal analysis of hybrid systems could be of use also
in an industrial automotive context, we need to know their
capabilities and evaluate them with respect to a variety of
aspects.

This work has two main objectives. Firstly, we aim at pro-
viding an overview over existing tools and their analytical
functionalities, relate the methods behind them and indicate
what a user can expect from using a certain approach. Sec-
ondly, we want to give insights into their usage including the
task of modeling, the execution of the verification process
and the interpretation of the results. We aim at providing gen-
eral observations regarding the applicability of these tools in
an industrial context, and highlight the challenges one has to
face during this process.

Outline. The paper has two parts. In the first part we
describe the used technologies, starting with an overview on
existing modeling paradigms and formal verification meth-
ods for hybrid systems in Sect. 2, followed by a description
of our tool selection in Sect. 3.

The second part is devoted to evaluation. In the Sects. 4–7
we discuss the different stages of our evaluation, shown in
Fig. 1: (i) the challenges that we faced, which can be gener-
alized to challenges engineersface when analyzing a hybrid
system, and (ii) general observations on the corresponding
processes, which can guide users towards successful verifica-
tion. The stages we distinguish are the benchmark selection
in Sect. 4, the model generation in Sect. 5, the execution of
the verification tasks in Sect. 6, and the observed results in
Sect. 7. In Sect. 8 we present our experiences on applying

some of the tools on a more realistic case study from auto-
motive industry. Finally, in Sect. 9 we conclude the paper and
make some remarks for future research and development.

Part 1: Technology

2 Hybrid systems and their formal modeling

Discrete systems change their state during system execu-
tion in no time, dynamical systems evolve continuously over
time, and hybrid systems have both discrete and continu-
ous components. A typical hybrid system example is a digi-
tally controlled physical system, where the digital controller
can discretely change the system state, and where between
two discrete changes the values of some physical quantities
like speed, temperature, or pressure evolve continuously over
time.

The first step to enable computer support for the analy-
sis of hybrid systems is modeling, i.e., the encoding of the
system behavior in a given formalism. A popular modeling
formalism for hybrid systems are hybrid automata [30, 31].
Hybrid automata extend discrete transition systems, defined
over a set of locations (also called control modes) and a set of
variables. Only continuous variables are supported; discrete
variables can be modeled as continuous variables with zero
derivatives. The system state is fixed by the current location
and the current variable values, and can change by taking
a discrete transition (jump), leading from the current loca-
tion to another one, potentially guarded by some enabling
condition, and potentially changing the system state also by
modifying the values of certain variables. Hybrid automata
extend such classical discrete transition systems with a dy-
namic (continuous) behavior: while the control stays in a
location, time evolution (flows) let the values of the variables
evolve continuously according to some dynamics, which is
specified by ordinary differential equations (ODEs). Invari-
ants can be attached to the locations to restrict the maximal
duration of time elapse, modeling the fact that some discrete
events will occur within certain deadlines. Semantically, time
can pass only as long as the current location’s invariant holds.

Before its formal definition, we first illustrate hybrid au-
tomata on an example.

Example 1 (Bouncing ball)
In the classical bouncing ball example, a ball is dropped
from some initial height with zero initial velocity. Gravity
accelerates the ball towards the earth and it falls until it
hits the ground. Then it bounces back into the air, rises
until its velocity becomes zero, and starts to fall again. Upon
bouncing, the ball loses a fraction of its kinetic energy.

A hybrid automaton model of the bouncing ball is illus-
trated graphically in Fig. 2. The model has a single location

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Fig. 2 A graphical
representation of a hybrid
automaton model for the
bouncing ball

�0 and two variables: x with any initial value between 10 and
10.2 models the vertical position (height) and v with initial
value 0 the vertical velocity of the ball.

The flow in �0 is specified by the differential equations
�x = v and �v = −9.81, with the gravitational force as the only
influence on the speed of the ball. This bouncing is rep-
resented by the only jump with guard x = 0 ∧ v < 0 (that
means bouncing only occurs when the ball falls from above
and reaches the ground) and reset v ′ = −0.75 · v (i.e., the
sign of the velocity is inverted and the velocity is dampened
by a constant factor 0.75). The invariant x ≥ 0 in �0 models
that the bouncing indeed happens when the ball falls (�x < 0)
and reaches the ground (x = 0). At this point, further time
elapse would violate the invariant, therefore a jump needs to
be taken. The only available jump is enabled, i.e., its guard is
true, therefore it can be taken. Taking it will change the sign
of the derivative of x by the reset v ′ = −0.75 · v , such that
time can pass further and the ball can raise and fall again.
Note that directly after bouncing only time can pass, because
v > 0 holds and therefore the jump’s guard is not satisfied.

While the above example model is deterministic, in gen-
eral, hybrid automata might be nondeterministic. When sev-
eral jumps are enabled simultaneously, any of them can be
chosen nondeterministically for execution. Per default, en-
abled jumps may but do not have to be executed, potentially
leading to continuous nondeterminism between flows and
jumps. Some formalisms support also urgent jumps, whose
enabledness forces a discrete step.

Next we formalize the above notions. The following sim-
plified syntactical definition of hybrid automata is sufficient
for our purposes; more complex formalisms exist to allow
compositional or hierarchical modeling with different com-
munication mechanisms [25].

Definition 1 (Hybrid automata: Syntax [30])
A hybrid automaton is a tupleH = (Loc,Var,Flow,Inv,Edge,
Init) consisting of the following components:

– Loc is a finite set of locations or control modes.
– Var = {x1, . . ., xd} is a finite ordered set of real-valued

variables; we also use vector notation x = (x1, . . ., xd) and
call d the dimension of H . We define �Var = { �x1, . . ., �xd}
(to represent first derivatives) and Var′ = {x ′1, . . ., x

′

d
} (to

describe discrete successors). Let PredX denote the set of
all predicates with free variables from a set X .

– Flow : Loc→ PredVar∪ �Var specifies for each location its
flow or dynamics.

– Inv : Loc→ PredVar specifies location invariants.
– Edge ⊆ Loc × PredVar × PredVar∪Var′ × Loc is a finite set

of discrete transitions or jumps. For a jump (�1,g,r,�2) ∈

Edge, �1 is its source location, �2 is its target location, g
specifies the jump’s guard and r its reset predicate, where
primed variables represent the state after the step.

– Init : Loc→ PredVar defines initial predicates.

Next we define the formal semantics of hybrid automata,
i.e., its execution. Let R denote the set of all real numbers,
R
≥0 the nonnegative reals, N the natural numbers (including

zero) and Z the integers. States of a d-dimensional hybrid
automaton with variables Var = {x1, . . . , xd} are pairs (�,ν),
where � ∈ Loc is the current location and ν = (ν1, . . . , νd) ∈

R
d specifies the current values of the variables (νi is the

value of xi). For g ∈ PredVar and ν = (ν1, . . . , νd) ∈ R
d , we

write ν |= g to denote that substituting νi for each xi evaluates
g to true; ν, ν′ |= r for g ∈ PredVar∪Var′ is defined similarly,
substituting xi as νi and x ′i as ν′i ; the case ν, �ν |= f for
f ∈ PredVar∪ �Var is analogous.

A state (�,ν) is initial if it satisfies both the initial condition
and the invariant of location �, i.e., ν |= Init(�)∧ Inv(�). State
changes are due to time steps or discrete steps.

Time steps (flows) model the passage of time: while staying
in a location, the values of the variables evolve continuously
according to a function which satisfies the flow condition
of the current location. Furthermore, the invariant of the
location must not be violated during the whole time step.
Given a set of states, the states which can be visited from it
via time evolution according to the flow in the given location
form a flowpipe. When flows define constant derivatives for
all variables then we talk about linear behavior. When flows
are described by linear predicates (i.e., linear differential
equations) we talk about linear dynamics, and in the case of
more expressive predicates (involving, e.g., polynomials or
trigonometric functions) about nonlinear dynamics.

Discrete steps (jumps) follow a discrete transition, moving
the control from one location to another, given that the jump’s
guard is satisfied in the predecessor state; the successor state,
resulting from variable resets according to the reset predicate,
must satisfy the invariant of the target location.

The transition relation in the form of time and discrete
steps is formalized by two operational semantics rules. A set
of assumptions needs to be satisfied to execute a step; nota-
tionally, these are listed above a horizontal line. Below the
line the transition itself is specified, i.e., how the step changes
the state if it is executed. The name of the rule is written on
the right of the rule.

Definition 2 (Hybrid automata: Semantics)
The one-step operational semantics of a hybrid automaton
H = (Loc,Var,Flow,Inv,Edge,Init) of dimension d is speci-

Springer

S. Schupp et al.

Table 1 Decidability results for subclasses of hybrid automata; rectan-
gular conditions are conjunctions of inequalities xi ∼ c with xi ∈ Var,
c ∈ Z and ∼∈ {>, ≥,=, ≤, <}; rectangular derivatives and resets are
similar but use dotted (�xi ∼ c) resp. primed (x′i ∼ c) variables; linear
derivatives are conjunctions of equalities �xi = e with �xi ∈ �Var and e a
linear expression over Var; linear conditions are conjunctions of linear

(in)equalities over Var; linear resets are conjunctions of (in)equalities
x′i ∼ e with x′i ∈ Var′, ∼∈ {>, ≥,=, ≤, <} and e a linear expression
over Var; arbitrary components may use any arithmetic formulas us-
ing addition, multiplication, trigonometric, exponential and logarithmic
functions, etc.

Hybrid automata
model subclass

Derivatives Conditions Resets Decidability of
bounded unbounded
reachability

Timed automata constant 1 rectangular resets to 0 � �

Initialized rectangular
automata

rectangular rectangular rectangular � �

reset forced when derivative changes
Rectangular automata rectangular rectangular rectangular � ×

Linear hybrid automata I rectangular linear linear � ×

Linear hybrid automata II linear linear linear × ×

Nonlinear hybrid automata arbitrary arbitrary arbitrary × ×

fied by the following rules:

� ∈ Loc ν,ν′ ∈ Rd t ∈ R
≥0 f : [0, t] → R

d

df /dt = �f : (0, t) → R
d f (0) = ν f (t) = ν′

∀t ′ ∈ (0, t). f (t ′), �f (t ′) |= Flow(�)
∀t ′ ∈ [0, t]. f (t ′) |= Inv(�)

(�,ν)
t
→ (�,ν′)

Flow

e = (�,g,r,�′) ∈ Edge ν,ν′ ∈ Rd

ν |= g ν,ν′ |= r ν′ |= Inv(�′)

(�,ν)
e
→ (�′, ν′)

Jump

A path of H is a (finite or infinite) sequence (�0, ν0) →

(�1, ν1) → (�2, ν2) . . . of H -states (�i, νi) ∈ Loc × Rd con-
nected by time or discrete steps → = (

⋃
t∈R

≥0

t
→) ∪

(

⋃
e∈Edge

e
→) such that ν0 |= Inv(�0); we call a path initial

if additionally ν0 |= Init(�0). A state (�,ν) of H is reachable
(in H) if there is an initial finite path (�0, ν0) → · · · → (�,ν)

ofH .

Given a hybrid automaton H and a subset S of its states,
the reachability problem is the problem to decide whether
there exists a state s ∈ S that is reachable inH . According to
the shapes of the flow, invariant, guard and reset conditions,
different subclasses differ in their expressivity (i.e., the type
of system that can be modeled) and the decidability of the
reachability problem (see Table 1). In this work we focus
on linear hybrid automata II and nonlinear hybrid automata
allowing linear and nonlinear ODEs in the models, and do
not cover algorithms and tools for more restricted classes
like timed automata.

If a state is reachable in a model then a path leading to
it is a witness (of reachability); if S represents unsafe states

then such a path is called a counterexample (to safety). As
the reachability problem is undecidable for hybrid automata,
most methods overapproximate reachability. Overapproxi-
mative analysis might detect spurious counterexamples in
the overapproximation for which there is no corresponding
path in the model.

At this place we do not discuss further modeling for-
malisms, as most of the tools we consider in this paper use
an input language based on hybrid automata; some others
use similar notions but assume known solutions to the flow
conditions in form of difference equations; also in use are
axiomatic definitions for theorem proving and hybrid Petri
nets [5] that extend Petri nets by continuous places to model
dynamic behavior.

3 Tool selection

In this section we describe four safety verification techniques
for hybrid systems and our selection of tools implementing
them.

3.1 Challenges

The research field of hybrid systems safety verification is
relatively young. There exist different algorithms and aca-
demic tools but their number is (yet) much lower than for the
analysis of discrete systems. Since 2017 a friendly competi-
tion [1] for hybrid systems safety verification tools is part of
the Applied Verification for Continuous and Hybrid Systems
(ARCH) workshop series. This competition offers different
tracks according to model categories, for instance, piecewise
linear hybrid systems or nonlinear continuous systems. The

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Fig. 3 Characteristics of
different hybrid system safety
verification approaches

results from this competition help to identify actively de-
veloped tools, determine the model types they support, and
get an impression on efficiency. Different tools use different
methodologies, one being more appropriate for certain pur-
poses than others, but the choice of methodology might be
challenging for users who are not familiar with the under-
lying verification techniques. Furthermore, even tools using
similar ideas have different strengths and weaknesses, and
their efficiency on concrete problems cannot be predicted.

Since exact computations are computationally expensive,
most tools sidestep to floating-point computations, which
might introduce numerical imprecision due to rounding.
Theoretically, rounding errors can be quantified, which al-
lows numeric approaches to provide provably correct results
at the cost of additional overapproximation. One such ap-
proach was implemented in the bounded model checking tool
HSolver [42]. However, most tools apply inexact com-
putations without costly error quantification, thus without
any guarantee for correct results. One exception is theorem
proving, which is less automated but provides certificates
in terms of proofs; also the core of most theorem provers
is verified, such that bugs in the tools are unlikely. As a
consequence, theorem proving-based approaches require the
user to provide overapproximations for undecidable dynam-
ics such as dynamics described by transcendental functions
(e.g., �x = cos (y) where x, y are variables).

In general, documentation and usability also pose a chal-
lenge, especially for prototype tools for proof of concept.
For academic tools (which are all tools in this field), usabil-
ity is not the foremost criterion as tools usually are written
to show the general feasibility of a certain approach or idea
rather than providing a user-friendly tool.

With the increasing appearance of so-called repeatabil-
ity evaluations for academic conferences, in which peer-
reviewers try to use a certain tool to replicate the achieved
results, we expect that the overall quality of tools with respect
to usability and documentation will increase; as at least the
latter usually is a strict requirement to pass these evaluations.

3.2 The selected methodologies and tools

We consider four methodologically different classes of al-
gorithms using flowpipe construction, theorem proving,

bounded model checking (BMC), or rigorous simulation. As
depicted in Fig. 3, flowpipe construction and rigorous simu-
lation are both fully automated and over-approximate reach-
ability without user interaction. Typically, they use some
geometric shapes (boxes, polytopes, etc.) for the overap-
proximative representation of state sets. Furthermore, both
approaches use time segmentation and analyze reachability
within the time segments separately. In contrast, approaches
based on theorem proving and bounded model checking use
logical formulas as representations, and time is not neces-
sarily segmented. Theorem proving is very powerful and
provides exact results but it is interactive, whereas bounded
model checking might be overapproximative but does not
require any user interaction.

To illustrate the verification process, we made a selec-
tion of tools implementing the above algorithms. Our se-
lection was driven by popularity and the aim to cover each
of the above methodology categories. Thereby we focused
on tools under active development, providing a sufficient
level of usability and maintenance. We have chosen seven
tools: CoRA [6], Flow* [22], SpaceEx [28] implement-
ing reachability analysis based on flowpipe construction,
Acumen [46] and HyLaa [11] implementing simulation-
based verification, dReach [32] implementing bounded
model checking, and KeYmaera [29] which is based on
theorem proving. Their high-level properties are summarized
in Table 2. All tools are free and open-source as to our knowl-
edge no commercialization has happened in this field yet. In
the following four subsections, we present each algorithmic
approach and the selected tools, together with estimations on
what a user can expect, if the respective approach is used.

The list of our selected tools is by far not complete. The
tools we selected are the most established ones in the different
categories, for instance, they take part in the annual compe-
titions, are used in case studies, and are often cited and com-
pared against. For the interested reader, some further tools
under active development are: Ariadne [14], C2E2 [26],
HyCreate [10], Nltoolbox [47] for models with non-
linear ODEs, and HyPro [43] and JuliaReach [21] for
models with linear ODEs.

The programming library HyPro and a specific verifi-
cation tool1 using the HyPro library called HyDRA are

1 In most of our publications, both are referred to as HyPro.

Springer

S. Schupp et al.

Table 2 High-level properties of the evaluated tools ordered by approach (Flowpipe construction (FPC), rigorous simulation (RIS), bounded
model checking (BMC), and theorem proving (THM))

Dynamics Tool interface Modeling language # Param. Reachable-set visualization

FPC CoRA Nonlinear Matlab-toolbox Matlab code Large Configurable plotting
Flow* Nonlinear Command-line tool Own automata-based

language
Few 2-D Plotting

SpaceEx Linear Web-GUI XML format for hybrid
automata

Med. 2-D Plotting

RIS Acumen Nonlinear Java-GUI Own programmatic
language

Med. All variables over time

HyLaa Linear Python framework Python code Few Configurable plotting

BMC dReach Nonlinear Command-line tool Own automata-based
language

Few All variables over time, only
counterexample candidates

THM KeYmaeraX Nonlinear Web-GUI Own logical language 0 None

developed in our group. Since we know their internals, and
thus we can tune them much better than the other tools, in or-
der to avoid an unfair advantage, we did not include HyPro
in our selection. In another context, we already compared
HyPro to some other tools [45]. This comparison indicates
that HyPro is competitive, but it is not superior to the other
tools that we selected. We note furthermore that also Flow*
has been created in our group, but its maintenance has been
moved in 2015 first to the University of Colorado and later
to the University of Dayton.

3.2.1 Flowpipe-construction-based reachability
analysis

Methods from this class iteratively compute the set of all
states that are reachable from a given set of initial states. To
overapproximate flowpipes, they divide a given time hori-
zon into smaller segments and overapproximate reachability
within the time segments individually by separate flowpipe
segments; the union of all computed flowpipe segments over-
approximates what can be reached via any time step within
the time horizon (see Fig. 11). State sets (like initial states or
flowpipe segments) are typically overapproximated by sets
with certain geometric shapes (e.g., boxes, convex polytopes
or zonotopes). Symbolic representations (e.g., support func-
tions or Taylor models) are also used (see Fig. 13). Various
algorithmic improvements and different state set representa-
tions have been developed in the past resulting in a diverse
group of tools for this approach.

Exploiting the geometric nature of state sets, it is common
to provide visualizations of the overapproximated sets of
reachable states via plots of the computed flowpipe segments.
While these plots are not required for the verification, they
certainly help the user to understand the system behavior on
a higher level.

A central aspect for reachability analysis via flowpipe
construction is which datatypes are used to represent state
sets. Together with some other parameters like the length of
the time segments, the chosen state set representation has a
strong influence on computational effort and precision. Once
a parameter configuration is selected, flowpipe-construction-
based tools are fully automated. Results are typically not
guaranteed to be correct for most of the tools, due to the
usage of inexact numerical computations.

CORA The CoRA tool [6] implements a flowpipe-con-
struction-based reachability analysis engine using zonotopes
and zonotope-affiliated state set representations such as poly-
nomial zonotopes. For probabilistic hybrid systems, proba-
bilistic zonotopes are provided.

CoRA is a Matlab-toolbox designed as a framework
for the verification of linear and nonlinear hybrid systems.
When using the CoRA Matlab framework, models, pa-
rameter configurations and calls to the verification engine
need to be embedded into Matlab-scripts by the user.
Similarly to SpaceEx (see below), CoRA supports com-
positionally specified models. The tool offers the possibility
to read SpaceEx-files and create a description of the under-
lying hybrid automaton; compositional models are prepro-
cessed and the product automaton is built. After the analysis,
plotting (via built-in Matlab-functions) needs to be done
by the user, and the computed overapproximation of reacha-
bility has to be checked against the specification by the user.
In our evaluation we used the release from 2018.

FLOW* The Flow* tool [22] also implements flowpipe-
construction-based reachability analysis especially for non-
linear hybrid systems based on Taylor models. The tool is im-
plemented in C++ and once compiled from source serves as a
command-line-tool without graphical user interface (GUI).

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

The tool takes exactly one hybrid automaton as input,
for compositional systems the product automaton has to be
built by the user. Using a Flow*-specific syntax, models
are specified in a single file which contains two parts: the
first part specifies the system variables as well as the settings
used for the analysis, while the second part contains the
description of the system as a hybrid automaton as well as
the set of initial states and the set of unsafe states. A hybrid
automaton is described by a set of locations with (potentially
nonlinear) dynamics and invariant conditions. In a second
step, jumps are described by means of edges connecting the
locations, together with their guards and reset relations. The
tool returns the result of the safety verification via command
line as well as a file for plotting (via gnuplot) of projections
of the sets of reachable states on a previously selected pair
of state space dimensions.

Flow* was among the first tools for the analysis of non-
linear hybrid systems and has been extended with several
features in later works. In this work we use version 2.0.0.

SPACEEX The SpaceEx tool [28] implements flowpipe-
construction-based reachability analysis for hybrid automata
with linear ODEs.

A Java-based graphical user interface (GUI) offers a con-
venient way for modeling (see Fig. 4). The specified models
are stored using an XML-based syntax, which is human read-
able, even though reading and editing in the XML-format is
not intended. When loading verification problems, besides
the XML-based model specification, a second file needs to
specify values for the analysis parameters as well as the set of
initial states and the set of unsafe states. SpaceEx supports
model specification by parallel composition.

The tool is implemented in C++ and can be compiled from
source. Additionally, a server for SpaceEx runs on a virtual
machine and allows to use it through a browser-based GUI.
The results of the verification in the GUI can be visualized
and saved as png files for multiple pairs of variables. In
case a specification is given, only the intersection of the set
of reachable states with the set defining the specification is
shown (the plot is empty, if safety could be shown).

For our evaluation we use the most recent command-
line version 0.9.8f; the screenshots of the GUI are made
with the most recent virtual machine image version 0.9.8d of
SpaceEx.

3.2.2 Bounded model checking

Tools based on the idea of bounded model checking encode
state sets and the semantics of hybrid automata as logical for-
mulas. Intuitively, a formula is built whose solutions encode
all paths of a hybrid automaton with a fixed length (fixed
number of jumps and potentially upper bounds on the dura-
tion of time steps). The conjunction of this formula with the

negation of the safety property encodes unsafe paths of the
given length. Satisfiability modulo theories (SMT) solvers
can be used to check whether the passed formula has a solu-
tion; in the case of satisfiability the method reports unsafety
along with a counterexample, otherwise the specification
cannot be violated and thus the system is safe for the current
unrolling. Starting with paths without any jumps, the anal-
ysis tool will check the existence of counterexamples and
if no counterexample is found then increase the number of
considered jumps by one and continue the verification until a
given upper bound of jumps is reached or a counterexample
is found.

For the analysis of hybrid systems the number of tools
implementing bounded model checking is relatively small,
as the logical formulation of a problem in the hybrid do-
main requires a theory for differential equations and SMT
solvers that support this theory. Most implementations are
based on interval arithmetic, which scales well with increas-
ing dimension but may lead to strong error accumulation
(wrapping effects) during computation. In contrast to flow-
pipe-construction-based approaches, the visualization of the
results is not inherent in the method. The set of parameters for
these approaches is usually small, the number of steps which
are unrolled as well as the time horizon are the central pa-
rameters. Once the upper bound (and potentially also a lower
bound) of steps for the unrolling is set, tools implementing
bounded model checking operate autonomously.

DREACH The dReach tool [32] implements a bounded-
model-checking-based approach on top of the SMT solver
dReal, developed by the same group. The main decision
procedure used is interval constraint propagation which does
not necessarily terminate, therefore the developers imple-
ment δ-satisfiability in dReal, which assures correctness
of the results up to a predefined accuracy δ.

dReach will return “SAT” if the specification is violated
and “UNSAT” otherwise, as the answer to the satisfiability
of the encoding of unsafe paths.

While the tool itself comes without a GUI, visualization
of the results is possible via a web-browser, which features
zooming and panning of the obtained plots. The visualization
shows the sets of reachable states for each variable plotted
over time. However, the plotting of reachable states is only
possible when the specification is violated as only the sets of
reachable states which contain a potential counterexample
trajectory are output. For our evaluation, we use the latest
version 3.16.06.02 of dReach which is available online.

3.2.3 Rigorous simulation

Tools based on this approach usually compute “simulation-
equivalent” reachability in which an overapproximation of
the set of reachable states can be obtained from a finite set of

Springer

S. Schupp et al.

Fig. 4 Screenshot of the SpaceEx GUI (left) and the model editor (right)

(rigorous) simulation traces. Rigorous simulation uses vali-
dated numeric such that numerical errors can be quantified
and bounded. Some of the tools conservatively overapprox-
imate the system behavior over the dense continuous time
domain, but some others consider the system’s behavior at
discrete points in time only. Discrete-time approaches are
naturally faster and therefore able to provide an intuition on
the behavior of systems with more expressive dynamics and
higher-dimensional state spaces. However, time discretiza-
tion sacrifices soundness: even when using exact arithmetic
computations, the approach might not detect all (continuous-
time) counterexamples.

ACUMEN The Acumen tool [46] implements various sim-
ulation and a few verification approaches based on interval
arithmetic for linear and nonlinear hybrid systems over con-
tinuous and discrete time.

The tool is shipped as a platform-independent Java bi-
nary with a Java-GUI (see Fig. 5). Acumen’s description
language is different from the previously discussed hybrid-
automata-like description languages: for Acumen, a hybrid
system is specified as a hybrid program where continuous
(e.g., x’ = ...) and discrete (e.g., x += ...) assignments

are executed. Acumen does not explicitly support the def-
inition of locations. Instead, one can encode the locations
of a hybrid automaton by an additional variable and spec-
ify different dynamics in different locations via a continu-
ous assignment with a case-distinction (similar to a switch-
statement). Discrete switches are encoded as conditional dis-
crete updates of the mode-variables in one location block.
The reason behind this modeling approach is that for Acu-
men, in the block where dynamics behavior is specified, all
lines of code are executed in parallel unless they are guarded
by conditions.

Acumen provides plots for all variables over time via its
GUI. We used the version from December 2016.

HYLAA Also the HyLaa tool [11] implements simula-
tion-based reachability analysis. It supports hybrid automata
with linear dynamics only. This approach utilizes discrete-
time numerical simulations of a given hybrid system with
fixed step-size. Consequently, in contrast to all other tools,
HyLaa computes the set of reachable states of a hybrid
system at fixed points in time instead of overapproximat-
ing the set of all reachable states within a given time inter-
val. A conservative overapproximation enables verification,
as it covers the complete reachability (within certain time

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Fig. 5 Screenshot of the
Acumen GUI. The upper left
frame serves as an editor, the
panel on the right shows plot
results after computing the
reachability or simulation of a
system. Status information is
printed in the lower left panel

bounds) but it comes with high computational costs; com-
puting reachability at discrete time points is more precise
and computationally much cheaper but in general it does not
cover all reachable states. The objective of this implementa-
tion lies on improving scalability towards high-dimensional
state spaces.

HyLaa is implemented in Python, i.e., the tool is
platform-independent. Models for HyLaa are provided by
means of a Python-script, in which analysis parameters and
a safety specification need to be specified. The analysis core
is called from within the script to perform reachability anal-
ysis, safety check and optionally plotting of the results. As
the developer of the tool is also part of the development team
of the model transformation tool Hyst [12] (see Sect. 5.2),
transformation from SpaceEx-files to HyLaa scripts via
Hyst works out-of-the-box and usually does not require
much adaptions afterwards.

Results obtained by HyLaa can be visualized as png
files for chosen pairs of variables. For our evaluation, we use
version 2 from July 2019 of HyLaa.

3.2.4 Theorem proving

Theorem provers like Coq [20], Isabelle/HOL [38],
KeY [4], or PVS [39] provide in their core an axioma-
tization of first-order-logic and some widely used theories
(e.g., arithmetic). To apply theorem proving for the verifica-
tion of hybrid systems, approaches in this class define, on top
of that core, an axiomatization for the theory of differential

equations and dynamic and hybrid systems. The safety (or
other properties) of these systems can be proven by defin-
ing proofs in those axiomatic systems, either automatically
or semiautomatically based on required user interaction to
guide the proof.

Theorem-proving-based approaches do not provide any
visualization of the outcome and often require user-
interaction. While this can be seen as a drawback, results
obtained with this approach are guaranteed to be sound.

KEYMAERAX A tool that implements hybrid systems veri-
fication via theorem proving is KeYmaeraX [29] which
utilizes the theorem prover KeY.

In our evaluation we used the web-based GUI of
KeYmaeraX which serves as a front end for the under-
lying Java-implementation and allows to create and modify
models as well as to interactively guide the proof for safety.
Models are provided by the user in differential dynamic
logic, which extends propositional logic by theories required
for the analysis of dynamic and hybrid systems. The general
structure first defines problem variables and constants, and
then a single formula which encodes the hybrid system. Note
that KeYmaeraX is restricted to decidable theories, which
excludes direct usage of transcendental functions such as sin
and cos in the model description. However, the developers
have described how a user may circumvent this problem in
certain cases via differential axiomatization [41] in which
transcendental functions can be avoided in the description
of the systems’ dynamics. As KeYmaeraX uses theorem

Springer

S. Schupp et al.

proving, so-called tactics (which are rules for the semiau-
tomated prover on which technique to use for the provided
formula and its sub formulas) can be specified in the model
file as well.

Local instances of KeYmaeraX can be equipped with
several solving backends. The user manual states that using
Mathematica as a backend works best; as we did not
have a license for Mathematica we used the suggested
freely available WolframEngine [2]. For our evaluation
we used version 4.7.4 of KeYmaeraX.

3.3 Installing the tools

In general, we did not observe any major difficulties in setting
up the tools using the manuals.

For Acumen the requirement of Java-8 was not
made public but was resolved quickly thanks to the ac-
tive developers. As mentioned in Sect. 3, KeYmaeraX
supports several backends for arithmetic, with a prefer-
ence for Mathematica. As we did not have access to
a Mathematica license we used the freely available
WolframEngine as a backend, therefore we emphasize
that the evaluation of KeYmaeraX needs to be treated
with care, due to its clearly nonoptimal setup.

Part 2: Evaluation

4 Benchmark selection criteria

In Sect. 2 we have presented hybrid automata as a model
for hybrid systems. In the following we use the term (formal)
model when we talk about a (formal) abstraction of a concrete
system. The term benchmark refers to the combination of a
model and a safety specification (usually given as a set of
states which should be avoided). Families of benchmarks
refer to a group of benchmarks where either the model is
fixed and there are different specifications given or to a group
of different instantiations of parameterized models. For the
latter, usually the general behavior of the single models in
the family is related and only differs in complexity, e.g., the
number of variables.

4.1 Challenges

The first task in our evaluation process was to select a set
of benchmarks, which is well suited to draw conclusions
regarding the applicability and usefulness of hybrid systems
analysis tools for industrial applications.

Unfortunately, the number of available benchmarks is
quite limited. The largest collection of about 60 benchmarks
is presented on the ARCH platform [3]. The annual ARCH

workshop allows researchers to present and add new bench-
marks to the collection or to give updates on the solutions of
existing benchmarks. Examples of further academic bench-
mark collections are [27] and [23]. Most of these benchmarks
are academic and represent simplified systems.

Given a pool of benchmarks, setting up meaningful selec-
tion criteria is also far from being trivial, as typical criteria
are either not measurable or they do not reliably assure ex-
pected properties. We discuss our criteria in Sect. 4.2, and
present the selection in Sect. 4.3.

4.2 Benchmarks properties

Below we specify our benchmark selection criteria, which are
partly quantitative (i.e., measurable) and partly qualitative.

Relevance We consider the connection of the benchmark
to automotive systems as well as the model’s level of abstrac-
tion, i.e., how realistic the model is in comparison to the orig-
inal system. Too little abstraction usually renders the model
difficult or impossible to analyze, while too much abstraction
potentially removes relevant behavior due to oversimplifica-
tion. However, these properties are hard to quantify.

Formal definition Some of the ARCH-benchmarks come
with model files for certain tools while others are informally
specified. We restricted our selection to formalized bench-
marks.

State space dimension (dim) The number of variables
in a model, called its dimension, gives a first estimation on
the complexity of the related verification task, even though
it needs to be handled with care: though the running times
typically increase exponentially with increasing dimension,
there are also high-dimensional models that are easy to an-
alyze and low-dimensional models whose analysis is hard.
Furthermore, different models of the same system might have
different dimensionality. Besides the inherent complexity of
the modeled system, another source of high dimensionality
can be a conversion of higher-order differential equations to
systems of first-order differential equations (as in the building
benchmark bld_48 below), as the former are not supported
in hybrid automata.

Number of locations (loc) and jumps (jmp) The size of
the discrete part of a hybrid automaton is another indicator
of problem complexity, even though also here no reliable
predictions can be made as, e.g., not all locations might be
reachable from the initial states.

Models from industrial applications are often composed
from several communicating and/or synchronizing subsys-
tems. To our knowledge, no compositional reachability anal-
ysis approach exists at the moment, i.e., verification requires

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

the syntactic composition of the subsystems, building a sin-
gle large hybrid automaton, whose size is exponential in the
number of subsystems. A few tools support compositional
input and build only the necessary parts of the composition
on-the-fly.

Nondeterminism Discrete and continuous nondetermin-
ism harden the verification task, because checking all possi-
ble choices causes branchings in the analysis process. Even
deterministic models might lead to such branchings due to
overapproximative computations, when additional steps get
enabled from the overapproximative part. The level of non-
determinism is not easily measurable: though there might be
syntactical hints for nondeterminism, determining whether
this causes branchings in the analysis cannot be reliably de-
tected by syntactical checks.

External inputs A specific type of continuous nondeter-
minism are uncertainties in a system, such as the environment
temperature or human input for car steering, that influence
the dynamics. These so-called external inputs, which require
computationally involved methods during the analysis, af-
fect running times negatively. Tools differentiate between
time-varying and fixed external inputs, and usually require a
bounded domain for them.

Hyperplanar guards They model discrete deterministic
switching that happens exactly at a certain system state, for
instance when a timer has reached a certain threshold-value.
For this reason, in the literature they are sometimes also
referred to as switching planes and the corresponding sys-
tems as switching systems. A two-dimensional illustration
is shown in Fig. 6, where only the green, one-dimensional
line segment within the orange state set satisfies the guard
condition (g, blue). Hyperplanar guards can be defined ex-
plicitly by linear equations or implicitly by combinations of
inequalities (as in the bouncing ball example, see Fig. 2). In
all selected benchmarks, guard sets which are hyperplanar
are defined explicitly.

For some approaches that use floating-point arithmetic
as, for instance, defined in IEEE 754, switching planes might
cause numerical instabilities due to implicit rounding: lesser-
dimensional state sets may become empty due to rounding.
This can be overcome in some cases by enlargement (see
Fig. 7) by giving the hyperplane a certain “thickness” in the
direction of its normal vector. Technically, for some linear
term t over the variables and a rational constant b, we replace
the hyperplanar guard t = b by b − ε ≤ t ≤ b + ε for some
ε > 0.

Zeno behavior This phenomenon occurs when infinitely
many jumps are taken in finite time. Zeno behavior causes
time-convergence, meaning that time will never pass beyond

Fig. 6 Hyperplanar guard
example (Color figure online)

Fig. 7 (Left) A guard set (green, normal vector h1) and a state set
(blue, normal vector h0) intersect in a line segment (thick blue), sim-
ilarly to what happens for hyperplanar guards; rounding of the state
set (red, normal vector h′0) may render this intersection empty. (Right)
Enlargement artificially enlarges guard sets and leads to increased nu-
merical stability (now the intersection is two-dimensional) at the cost
of an overapproximation error (Color figure online)

Fig. 8 Hybrid automaton with
Zeno behavior

a given finite bound. For example, the model in Fig. 8 al-
lows taking the jump infinitely often without letting any time
elapse, as the jump is always enabled. Another example is
the bouncing ball (see Fig. 2), where the ball bounces more
and more frequently and time converges to a certain finite
value but never reaches it.

Obviously, real-life applications are free from Zeno be-
havior. Nonetheless, certain kinds of abstraction might add
Zeno paths to models. For instance, the model of the bounc-
ing ball neglects certain energy losses upon bouncing. Zeno
paths are problematic for reachability analysis methods that
use iterative successor computations to overapproximate
reachability within a given time horizon: if the total duration
of a Zeno path falls within this time horizon, then infinitely
many time successor computations would be scheduled by
the method and it would not terminate. The general problem
to decide whether a model has any Zeno path is difficult
(actually as hard as the reachability problem itself).

4.3 The selected benchmarks

For our selection we focused on a set of quantitative cri-
teria and on relevance as a qualitative criterion. We aimed
at benchmarks with varying state space dimension to evalu-
ate scalability. Additionally, we considered benchmarks with

Springer

S. Schupp et al.

Table 3 The selected benchmark instances and their high-level charac-
teristics. The columns from left to right specify: the benchmark instance
(Name), whether the system is hybrid (hyb), number of variables (dim),
number of locations (loc), number of jumps (jmp), whether there is
external input (Ext in), whether all guard sets are hyperplanar (Hypl
grd), and whether Zeno paths exist (Zeno)

Name hyb dim loc jmp Ext Hypl Zeno
in grd

Linear bld_48 × 48 1 0 � N/A N/A
plt_42 � 9 2 2 � � ×

plt_30 � 9 2 2 � � ×

flt_04 � 6 4 4 × � ×

flt_08 � 10 4 4 × � ×

flt_16 � 18 4 4 × � ×

flt_32 � 34 4 4 × � ×

Nonlinear ste_05 � 3 7 12 × × �

ste_10 � 3 7 12 × × �

ste_RV � 3 7 12 × × �

gly_01 � 5 3 4 × � ×

gly_02 � 5 3 4 × � ×

gly_03 � 4 2 1 × � ×

pnd_01 × 4 1 0 × N/A N/A

varying numbers of discrete locations as well as different
types of dynamics. Furthermore, we have chosen bench-
marks for which preliminary results have shown that most of
the tools could solve them.

Based on the above criteria, we have chosen six bench-
mark families, three with linear differential equations and
three with nonlinear ones, four hybrid and two purely con-
tinuous systems. Considering different variants, parameters,
initial sets and safety specifications, we will use in total 14
benchmarks within these six families. Table 3 shows the
benchmarks and their properties. The names of the bench-
marks are composed from the name of the benchmark family
followed by a unique instance id.

A detailed description of the selected benchmarks can be
found in Appendix A; the model files and description are
available online.2

5 Model generation

Formal verification requires formal models, which we gen-
erated for all selected benchmarks and tools.

Summarized key observations:

– Model construction could be done for all the tools with a
reasonable amount of effort.

2 https://ths.rwth-aachen.de/research/projects/ford-aachen-hybrid/.

– Models can be defined conveniently with the SpaceEx
modeling GUI.

– The tool Hyst converts SpaceEx-models to certain other
input languages and CoRA offers an internal SpaceEx-
to-CoRA converter.

– Some approaches are distributed as executable binaries
while others are programming libraries.

– Not all input languages have a formal semantics. There-
fore, they can only be compared semi- or informally.

5.1 Challenges

It is not clear upfront which tool is able to solve a given
verification problem. We can identify those tools that support
the required expressivity and functionality, but it is hard
to predict which tools might succeed and which not. Thus
typically one would try several tools.

Unfortunately, there is no widely accepted standard in-
put language for the formal specification of hybrid systems.
Therefore, the user has to model each benchmark for each tool
in its specific input language. This step is not only tedious
but also challenging, as for different modeling languages
semantics-preserving transformations have to be tailor-made
due to the varying expressiveness of the description lan-
guages.

As mentioned in Sect. 4.2, the presence or absence of
certain model behavior like Zeno paths or switching planes
might have a major impact on the running times and the
outcome of the verification process. However, inexperienced
users might not be able to recognize the existence of Zeno
paths or other, for the analysis disadvantageous properties.

5.2 The model generation process

We started investigating the tools and input languages by first
reading the provided user manuals. Hello world examples
for hybrid system modeling, such as the bouncing ball, are
available for all tools. These modeling examples (which are
usually included in the code distribution, in the users’ manual
or on the tool’s web page) are mostly well documented and
have been very helpful to understand the basic concepts.

The SpaceEx language has become quite common and is
supported also by some other tools. We could use available
SpaceEx models for all of the selected benchmarks. An
example SpaceEx model for the bouncing ball is shown
in Algorithm 1, screenshots for the modeling GUI are shown
in Fig. 4b.

Also some other tools use hybrid-automata-style input
models but the description languages vary in syntax as well
as expressiveness. As a second example, Algorithm 2 shows
a Flow* model of the bouncing ball.

The Java-based conversion tool Hyst [12] provides
transformations from SpaceEx-format into the input lan-
guages of the tools dReach, Flow*, and HyLaa (see

Springer

https://ths.rwth-aachen.de/research/projects/ford-aachen-hybrid/

On the applicability of hybrid systems safety verification tools from the automotive perspective

Algorithm 1 Code example for SpaceEx for the bouncing
ball. Note that SpaceEx comes with a GUI (see Fig. 4a)
to create models, such that manual editing of model files is
rarely required
<?xml version="1.0" encoding="UTF-8"?>
<sspaceex xmlns=

"http://www-verimag.imag.fr/xml-namespaces/
sspaceex"

version="0.2" math="SpaceEx">
<component id="ball_template">

<param name="x" type="real" local="false"
d1="1" d2="1" dynamics="any" />

<param name="v" type="real" local="false"
d1="1" d2="1" dynamics="any" />

<param name="hop" type="label" local="false"
/>

<location id="1" name="always" x="174.5" y
="225.5"

width="135.0" height="73.0">
<invariant>x >= 0</invariant>
<flow>x’ == v & v’ == -9.81</flow>

</location >
<transition source="1" target="1">

<guard>x <= 0 & v < 0</guard>
<assignment >v := -0.75*v</assignment >
<labelposition x="-41.0" y="-69.0" />

</transition >
</component>
<component id="system">

<param name="x" type="real" local="false"
d1="1" d2="1" dynamics="any" controlled="

true" />
<param name="v" type="real" local="false" d1

="1" d2="1"
dynamics="any" controlled="true" />

<bind component="ball_template" as="ball" x
="2.0" y="1.0">

<map key="x">x</map>
<map key="v">v</map>

</bind>
</component>
</sspaceex >

Algorithm 2 Code example for Flow* for the bouncing
ball
hybrid reachability {

state var x, v

[... settings ...]

modes {
l0 { lti ode { x’ = v v’ = -9.81 } inv {

x >= 0.0 } }
}
jumps {

l0 -> l0 guard { x <= 0.0 v <= 0.0 }
reset { v’ := -0.75 * v }

parallelotope aggregation {}
}
init {

l0 { v in [0, 0] x in [10, 10.2] }
}

}

Fig. 9 Model transformation possibilities via Hyst. Input is always
provided in the SpaceEx language. The output languages supported
but not used in this work are depicted in gray

Fig. 10 GUI of the transformation tool Hyst. Apart from transfor-
mation, the tool allows including preprocessing (option: transformation
pass) to simplify systems according to predefined rules

Fig. 9). Hyst comes with a GUI (see Fig. 10) and al-
lows including the so-called transformation-passes, which
modify the parsed automaton syntactically or semantically
before transformation. Syntactic transformation passes may
for instance add explicit identity resets, simplify arithmetic
expressions, or substitute parameters by values. Semantic
transformation passes among others allow scaling time or
reducing the order of the ordinary differential equation sys-
tems which describe the dynamics. Several transformation
passes may be combined sequentially (to be executed one
after the other). All these transformations preserve some
kind of semantic equivalence, even though not always at the
level of concrete trajectories. Such transformations might be
necessary to enable model transformation from one input
language to another but they might also be used to ease the
analysis task.

For CoRA, the model script can be obtained via an
internal SpaceEx-to-CoRA converter. The models for
KeYmaeraX and Acumen had to be specified manu-
ally, without tool support.

5.3 Observations

Automated model transformation Though we could ob-
tain initial models for dReach, Flow* and HyLaa using
Hyst, not all SpaceEx language features are translatable

Springer

S. Schupp et al.

to other tools (for instance, differential algebraic variables,
which are auxiliary variables whose values are defined, e.g.,
by equations). Furthermore, specifications that can be parsed
by SpaceEx are sometimes rejected by Hyst, because
Hyst requires explicit initializations for all parameters,
whereas SpaceEx is more generous using default values
for missing parameter values. Due to these issues, the gen-
erated models needed some manual adaption, but in general,
the transformation worked well.

As mentioned before, the automated model transforma-
tion does not cover all tools. The major difficulty for model
transformation is to identify compatible fragments of the in-
put languages for which there exists a semantics-preserving
transformation. For example, it is challenging to transform
automata-based models into semantically equivalent differ-
ential dynamic logic programs for KeYmaeraX, or into
programming languages required by CoRA and HyLaa.

Programming libraries CoRA and HyLaa do not pro-
vide executables but require the user to write a program,
which calls a reachability analysis method. For CoRA, we
had to write most parts of the instructions (apart from the
hybrid automaton definition, see above) manually, whereas
for HyLaa we could obtain a program via transformation
with Hyst. During modeling (and later execution) we could
observe that programming libraries allow for more freedom
in the design of the analysis but are also more error-prone.

Syntax and readability In general, the syntax of the used
languages is well understandable apart from a few peculiar-
ities.

The readability of models differs between the tools: many
tools (CoRA, dReach, Flow*, HyLaa) aim at using
automata-based descriptions via dedicated languages such
that they can be modified by hand, while for others compact-
ness (KeYmaeraX) or simplified parsing for a machine
(SpaceEx) lies in the focus. For programming libraries, the
model definitions are lengthy and might be harder to parse
by humans.

We noted a few issues, which might seem unusual to
new users of the respective tool. We found that for Flow*,
whitespace within a single line in the input has a semantics,
which is unusual and may lead to confusion (see, e.g., spec-
ification of guards in Algorithm 2 where several constraints
are put in a single line). Furthermore, division by a constant
in Flow* has to be encoded via multiplication. For Acu-
men, its input language includes the declaration of a special
block in the model (labeled by always), in which every state-
ment is executed as if it was run in parallel—this feature is
documented but requires a bit more cognitive capacity to be
fully comprehended by the user.

We expect that readability is only a relevant criterion when
models need to be adjusted by hand, e.g., during prototypical
development.

Soundness Even if most input languages are intuitive,
not all have a formal semantics, and we are not aware of any
formal correctness proof for the Hyst transformation tool.
For our benchmarks, we did not prove semantic equivalence
formally, but applied code review and compared the com-
puted reachability results to validate equivalence. During
these checks, we did not detect any inconsistencies.

6 Verification task

In this section we chronologically report our observations
throughout the different phases of the verification task.

6.1 Challenges

An important issue is the identification of suitable analy-
sis parameter values (see Sect. 6.2). Correct parameter set-
ting is a major obstacle for users. Even though parameters
are usually documented, the documentations are not always
complete. To be able to estimate the effects of certain pa-
rameters, the user needs to be aware of the internals of the
tools. Each tool implements its own algorithm with own pa-
rameters. The parameter sets of different tools are nearly
incomparable, thus parameter configurations are in general
not transferable.

After the identification of the parameter values, the verifi-
cation step can be run (Sect. 6.3). Besides detecting syntactic
problems in the models we also discovered a few bugs in the
tools as well as cases of numeric instabilities, but all in all,
running the verification process did not cause any major
problems.

6.2 Parameter specification

Summarized key observations:

– Different tools come with different, often incomparable
parameter sets.

– Tool parameters, their meaning and interplay are often
poorly documented.

– Finding suitable parameter configurations requires an
understanding of the implemented method.

– Only a subset of the tools offers a GUI (SpaceEx,
KeYmaera, Acumen).

– Smaller parameter sets simplify the verification process
but restrict optimality; adaptive parameters may help the
user without losing optimality.

Especially approaches implementing flowpipe-construc-
tion-based reachability analysis come with larger sets of
parameters to tune; theorem proving and bounded model
checking require less tunings. For each selected benchmark,
the parameter settings we used for each of the selected tools
can be found in Appendix B.

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Fig. 11 Reachability within
time segments (lines, blue) and
their overapproximating
flowpipe segments (polygons,
red). A color figure is available
online

Fig. 12 Clustering groups state sets and overapproximates the union
of each group by a single set; aggregation overapproximates the union
of all sets by a single set

Documentation Most tools document only their most ba-
sic parameters, and often without explaining their effects
and interplay in detail. This is probably partly due to the
academic nature of the tools, but also because it is difficult
to make general statements about the parameters’ meaning
and influence on the computations.

In some cases, missing documentation could be compen-
sated by consulting available examples. For instance, Acu-
men documents its simulation parameters but not those for
verification. However, it offers an exceptionally large set of
examples, which helped to find out which analysis parame-
ters are available and how they affect the analysis.

Finding suitable parameter values The parameter val-
ues affect precision and running times and have therefore a
strong impact on the verification success. However, for some
of the available parameters it is hard to find suitable values
because this process requires a deeper understanding of the
implemented methods.

For instance, the flowpipe construction approach over-
approximates reachability according to the continuous dy-
namics within a given time horizon by overapproximating
time segments of a given time step length separately (see
Fig. 11). From each of these flowpipe segments, jump suc-
cessors can be either processed separately or, in order to

reduce the computational effort, these can be clustered or
aggregated (see Fig. 12). Both parameters (time step size
and aggregation) can have significant influence on the run-
ning times. For instance, turning off aggregation may result
in an exponential increase in the number of segments to com-
pute. Furthermore, each segment is overapproximated using
special state set representations, some of them illustrated in
Fig. 13. The intuitive effect of these parameters is illustrated
in Fig. 14.

One would expect as it is the case in Fig. 14 that decreas-
ing the time step size leads to higher precision on the cost
of longer running times, and conversely that increasing the
time step size has the opposite effect. While the effects on
precision usually behave as expected, in some cases increas-
ing the time step size leads to increased overapproximation
from which more states are reachable, what might enable
further jumps, leading to increased computational effort and
longer running times. In rare cases, depending on the imple-
mented approach and the system which is analyzed, it may
also happen that a smaller time step size reduces precision,
as errors during the computation accumulate, which has a
stronger effect if more segments are computed. We observed
this for the Flow* tool on certain benchmarks.

In addition, parameters do not always behave linearly.
For instance, Flow* allows to set the precision of floating
point numbers by fixing the number of bits for the mantissa.
Processors are optimized for the default value of 53 bits for
the mantissa, which corresponds to double-precision. In our
experiments, increasing the precision caused longer running
times but reducing it did not have any observable effect.

In general, we observe that while a large set of avail-
able configuration parameters may enable very precise cus-
tomization, often the required effort to correctly adjust these
parameters and to estimate their impact outweighs the gained
advantage.

To ease the parameter selection, some of the tools imple-
ment adaptive analysis methods. The STC algorithm imple-
mented in SpaceEx, for example, allows giving a relative
error bound on the computation and adapts its parameters to
achieve this bound. Similarly, Flow* provides the feature of
adaptive Taylor model orders during computation. The tool
HyLaa implements counterexample-guided refinement of
the computation by switching off the aggregation. In our
execution we did observe the positive effects of adaption:
adaptive parameters ease the usage of a tool, as parameters
can be chosen from a set and thus do not require precise
setting but instead the tool will adjust those parameters on
demand during execution.

Dependencies and incompatibilities Some parameters
influence each other, but there is very limited documentation
on how parameters interact. Some parameters only have mea-
surable effects in combination with other parameter configu-

Springer

S. Schupp et al.

Fig. 13 State set
representations in
flowpipe-construction-based
reachability analysis

Fig. 14 Influence of different analysis parameters on the verification result illustrated using SpaceEx on the bouncing ball example. We vary the
state set representation (support functions vs. boxes), the time step size δ, and whether successors of discrete jumps are aggregated or not

rations which may lead to misinterpretation of a parameter’s
effects and influences.

Most of the tools have incompatible parameter value
combinations, but also this information is not well docu-
mented. For instance, some parameter configurations related
to guard intersection operations in the tool CoRA are not
compatible—the tool will throw errors during computation,
which requires manual effort to relate those errors to a wrong
parameter configuration.

A GUI may help to identify incompatible parameter value
combinations; for example, SpaceEx prevents the user
from choosing certain parameters when not applicable by
greying the respective fields in the GUI depending on prior
choices of other parameters. On the other hand, we found that
for the selection of clustering/aggregation, which are differ-
ent methods on how to treat state sets during discrete jumps,

SpaceEx offers four options: none (which can be seen as
default), clustering, aggregation, and an empty field,
which caused confusion, as it is unclear what its semantics
is.

KeYmaeraX also offers a GUI for modeling and proof
creation and provides extensive tooltips along with links to
guides to aid the user in creating proofs. We feel that similar
assistance could also improve the usability of other tools
significantly.

For tools without a GUI (CoRA, dReach, Flow*,
HyLaa), where parameters are provided via the terminal
or within a file and the option of excluding certain combi-
nations of parameters is limited, it may improve usability by
mentioning parameter interaction insights including infea-
sible and zero-impact parameter configurations in the user
manual.

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Comparability As the parameter sets of the tools are not
comparable (one of the few commonly shared parameters
is the time-step size for flowpipe-construction-based tools),
parameter configurations need to be identified for each tool
separately. In this evaluation, being able to relate parameters
from different tools to each other played an important role
for comparability. One example for this is how to bound the
analysis. Most tools bound the jump depth to a certain (user-
defined) value d, i.e., each analyzed execution trace exhibits
at most d discrete jumps. This is different in SpaceEx,
where the parameter iterations bounds the total num-
ber of considered discrete jumps over all analyzed traces in
the analysis. While this is a perfectly reasonable way to ef-
fectively bound the execution, without knowing the search
heuristics (e.g., whether depth-first or breadth-first search is
executed) it is hard to estimate the effect of the iteration
parameter on the analysis and thus it is hard to obtain param-
eter values for the parameter iteration that are in effect
comparable to a certain jump depth. Also CoRA handles
bounded analysis differently—here, only the execution time
is bounded, i.e., a maximal number of jumps cannot be pro-
vided. In our evaluation we resolved this issue by setting the
jump depth (respectively the number of iterations) to a rea-
sonably high value and bounded the global time horizon of
the benchmark via an additional clock variable (that means
the time duration of the model execution is bounded similar
to the approach that CoRA implements). Furthermore, we
aimed to set parameters for each tool in such a way that the
resulting precision is similar.

Initial sets The shape and size of the initial set might
have a strong impact on the verification outcome. When
verification does not succeed, dividing the initial set into
subsets and checking them individually often helps to verify
a model. However, this is a trial and error process, and is not
automated.

6.3 Running the verification process

Summarized key observations:

– Most tools run fully automated, only KeYmaeraX re-
quired user-interaction during the analysis.

– Syntactic problems in the models are detected at runtime.
– We observed numerical instabilities in certain cases.

Verification process Most verification processes could
be run without any major problems, we encountered just a
few issues.

As modeling and verification are separate processes, syn-
tactic problems are typically detected at the attempt of exe-
cution, for instance not being able to divide by a constant c
but instead using a factor 1

/c.

In rare cases we encountered bugs in the tools but it is
not always fully clear whether something is caused by a bug
or by the fact that we cannot truly interpret the results. As
an example, dReach implements δ-reachability, therefore
counterexamples might be spurious; however, for certain pre-
cisions it happened, that a specification composed as a half-
space was declared as not being reachable while its inverse
was also declared as being not reachable, which seems to be
contradicting. When we reported bugs, most tool developers
reacted promptly and provided fixes that indicates the active
development in this community; some other bugs are still
under investigation.

CoRA tends to require more memory than other tools.
Additionally, CoRA caches parts of its computations, which
results in different running times for repeated analyses.

Verification with KeYmaeraX is interactive. Despite
lots of tooltips and hints on the rules which can be used,
the usage of this tool often requires in-depth knowledge of
the model under verification as well as the proof rules. This
understanding was lacking in our process and we failed to
verify the selected benchmarks.

Numerical instabilities Since most tools use floating
point arithmetic, numerical issues may arise, especially dur-
ing computations with point-sets, hyperplanar guards or non-
full-dimensional sets (see Sect. 4). Whenever numerical in-
stabilities became an issue, we have relaxed the model by
enlarging the respective constraints.

7 Results and observations

In this section we discuss the obtained results and condense
some recommendations.

7.1 Challenges

The running times of the verification, provided in Sect. 7.2,
strongly depend on the parameter configuration (see also
Sect. 6.2). Especially for large systems, adjusting parameters
becomes a time-consuming process as the user needs to wait
for the analysis to finish and may require several runs to find a
suitable parameter configuration. Tools which allow prema-
turely terminating computation once the safety specification
is violated ease this process.

Another important evaluation criterion is the reachability
result, i.e., the computed set of all reachable states, or more
importantly the size of the overapproximation. However, due
to different representations and a lack of a mathematical basis
for measuring set sizes and distances, there is no easy way to
compare the computed sets of reachable states. To illustrate
this, Figs. 15 and 16 show exemplary plots which highlight
the differences between different tool outputs.

Springer

S. Schupp et al.

Fig. 15 Plots for the building
system (bld_48) computed with
SpaceEx (left) and HyLaa
(right). Both plots show the
displacement of the 8th floor of
the building over time

Fig. 16 Plot for the spring pendulum system (pnd_01) computed with
Acumen (left) and Flow* (right). While Acumen plots each vari-
able over time, Flow* (like many tools implementing flowpipe-con-
struction-based reachability analysis) plots two user-selected variables

(here: r (spring length on the vertical axis) over θ (angle on the hori-
zontal axis), which corresponds to the 3rd and 1st variable in the plot
from Acumen)

Note that while the general intention of safety verification
tools is to provide an answer to the question, whether a given
model of a system conforms to a given specification, a visu-
alization of the computed sets of reachable states may help
to understand the obtained results, estimate the correctness
of the model, the size of the overapproximation or the spuri-
ousness of a counterexample. Conversely, not being able to
get visual feedback of the computed sets of reachable states
of a given system makes debugging and parameter adaption
a challenging task. Especially in case of complex systems, if
the verification process detects potentially unsafe behavior,
without a visual feedback it is hard to estimate whether the
model is correct, and whether it is really unsafe. A discussion
on the interpretation of verification outcomes can be found
in Sect. 7.3.

We conclude this section with some recommendations in
Sect. 7.4.

7.2 Running times

In Table 4 we present the running times on a machine with an
Intel Core i7 (4× 4 GHz) CPU and 16 GB RAM. We do not
list running times for the interactive KeYmaeraX tool as

they are not comparable to fully automated computations. We
emphasize furthermore that the analysis approaches and the
parameter sets of the tools are so different, that the running
times are far from being comparable and do not provide an
optimal measure for tool quality.

We could observe that for some tools the running times
differ from the running times reported in the ARCH-
competition [7–9]. The reason for this is that in the com-
petition the tool developers were able to adjust the models
and tools according to the respective benchmark instance.
The building benchmark (bld_48), which has the highest
dimension among the selected benchmarks could be veri-
fied by most tools but the running times were sometimes
longer than other reported running times. A similar effect can
be observed for the platoon benchmark instances (plt_30,
plt_42). This observation hints that expert knowledge and
experience with a specific tool may significantly improve
analysis results. On the one hand, this raises the demand
for more automated approaches to lower this bar of required
expertise and on the other hand shows that a close collabo-
ration between industry and tool developers for technology
transfer may improve the general quality of results obtained
by inexperienced users as well.

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Table 4 Running times in sec
for our experiments (⊥: unsafe
states reached in the
overapproximation; to: timeout
after 20 min; *: error; N/A: tool
is not suitable for the instance)

Instance Flowpipe construction BMC Rig. simulation
CoRA Flow* SpaceEx dReach Acumen HyLaa

Linear bld_48 89.23 to 48.00 43.55 * 40.41
plt_42 * ⊥ 0.74 to to 25.11
plt_30 * 21.63 12.56 to to 26.97
flt_04 * 1.34 0.07 1.31 * 0.07
flt_08 * 3.57 0.32 4.80 * 0.09
flt_16 * 21.34 0.26 8.12 * 0.21
flt_32 * 131.28 3.29 38.94 * 0.72

Nonlinear ste_05 1.49 0.39 N/A to 10.00 N/A
ste_10 * 3.05 N/A to * N/A
ste_RV * 474.79 N/A to * N/A
gly_01 * 19.79 N/A 5.45 to N/A
gly_02 119.40 27.76 N/A 5.88 to N/A
gly_03 * 15.95 N/A 0.21 to N/A
pnd_01 9.25 919.32 N/A 0.26 * N/A

Timeouts For the evaluation, we use a timeout of 20 min-
utes (“to” in Table 4). This timeout threshold is chosen based
on experience and to keep the duration of the evaluation pro-
cess within reasonable time bounds. While larger values for
the timeout threshold theoretically yield less timeouts in the
results, experience has shown that on benchmarks of this size
tools tend to run out of resources, e.g., memory, instead of
being successful on longer runs.

When searching for unsafe paths, uncertainty via external
input (bld, plt) or a higher number of locations and outgo-
ing jumps per location (ste) increase the problem complex-
ity, such that we can observe more frequent timeout for such
benchmarks. The increased complexity seems to have the
strongest impact on the bounded model checking approach,
where executions are encoded as logical formulas; we can
observe that dReach struggles with such benchmarks but
works very well on others. For the steering controller bench-
mark family (ste_05, ste_10, ste_RV), dReach was able
to successfully verify paths with up to 16 jumps within the
timeout but could not cover all paths up to the global time
horizon of 30 time units. The platoon benchmarks (plt_42,
plt_30) do not exhibit strong branching; perhaps the exter-
nal input made the analysis hard for bounded model checking
as the tool dReach could not complete the computations
for the first time-transition within the provided time limit.

Internal problems The entries “*” in the table denote in-
ternal problems, such as numerical issues or segmentation
faults. As pointed out in Sect. 6.3 most of the observed
errors were allottable to numerical issues as far as the er-
ror message could reveal. CoRA works well on continuous
systems but suffers from numerical instabilities when jumps
are involved: computing guard intersections, especially for

switching planes (hyperplanar guards), cause problems for
the used library for representing convex polytopes. Unfor-
tunately for CoRA, most benchmarks are hybrid; another
benchmark collection could have been more appropriate to
demonstrate the strengths of the tool.

Inconclusive results Entries marked with “⊥” denote
cases in which we were not able to verify the model due
to overapproximation errors being too large, neither with
the parameter configuration listed in Appendix B nor with
several other configurations we tried.

Impact of methodology The implemented approach for
safety verification has a huge effect on the analysis results,
which also depends on the type of application and analyzed
system. For instance, the results for the tool Acumen seem
not to be convincing at first sight. The tool itself is powerful.
We can highly recommend it for simulation, for which it was
developed; verification is a recent functionality developed on
top of simulation but it uses interval arithmetic that might
lead to intensive case splitting, and often causes large error-
accumulation.

For the linear benchmarks, both tools SpaceEx and
HyLaa provide results on all selected systems. For fairness,
we mention that both tools focus on linear hybrid systems
only and thus are able to provide a tailored approach for ver-
ification. Furthermore, HyLaa works with discrete-time
numerical simulation: HyLaa computes the set of reach-
able states of a hybrid system only at fixed points in time,
instead of over-approximating the set of all reachable states
in continuous, dense time.

The tool Flow*, which is dedicated to the analysis of
nonlinear hybrid systems, produced in general longer run-

Springer

S. Schupp et al.

ning times for linear benchmarks, which is not surprising
as the algorithm for nonlinear hybrid systems is computa-
tionally more involved; on nonlinear benchmarks Flow*
yielded the best performance. The tool CoRA implements
both approaches, one for linear hybrid systems and one for
nonlinear hybrid systems; depending on the dynamics, the
tool selects the appropriate approach.

For all tools, we could observe that the analysis of purely
continuous systems is more developed than the analysis of
systems with mixed discrete–continuous behavior. This re-
sult is expected (and now confirmed by our observations),
as the extension towards hybrid systems includes more chal-
lenges not being present in a purely continuous systems.

7.3 Result visualization

Most tools based on rigorous simulation or flowpipe con-
struction provide some visualization of the computed sets of
reachable states; usually projections of the sets of reachable
states can be plotted to a file while some of the tested tools
plot variable valuations over time. We could observe, that
for tools with a GUI, zooming and panning features were
helpful.

Note that all tools which allow selecting a set of state
space dimensions for plotting (CoRA, Flow*, HyLaa,
SpaceEx) require recomputing the set of reachable states,
i.e., the full analysis, once the selected variables for plotting
are changed. However, some of the tools allow selecting
multiple pairs of variables for plotting to create a set of plots
at once; two example plots computed with SpaceEx and
HyLaa are shown in Fig. 15. In contrast to this, the tools
Acumen and dReach provide plots of each variable over
time (see, e.g., Fig. 16).

The KeYmaeraX tool does not provide any visualiza-
tion of results.

7.4 Recommendations

A wide range of academic tools exists for hybrid systems
verification—in this work we have only covered some of
them. Depending on the problem at hand and based on our
observations during the experimental evaluation, the deci-
sion of a suitable tool may profit from the following high-
level observations which summarize our results:

– Linear continuous systems. For linear continuous systems,
the tools SpaceEx, CoRA, dReach, and HyLaa pro-
duced promising results (see Table 4).

– Linear hybrid systems. Although many tools claim to cover
this class of systems, we feel that SpaceEx provides the
most mature implementation. If the user can afford to check
reachability at discrete points in time only, HyLaa may
be an option as well. Both tools HyLaa and SpaceEx

were able to successfully verify all provided benchmarks
in this class; during the evaluation both required at most
few adaptions in the parameters.

– Nonlinear continuous systems. For nonlinear continuous
systems, CoRA and dReach show promising results
with respect to running times and capabilities (see Ta-
ble 4), furthermore Flow* allows analyzing this class of
systems.

– Nonlinear hybrid systems. For this class of systems, the
tool Flow* seems to provide the most mature implemen-
tation as it was the only tool which could provide results for
all benchmarks in this category with the chosen settings.

Note that these observations were made based on the re-
sults obtained during our experimental evaluation on a re-
stricted set of benchmarks.

8 A more realistic case study

To go beyond academic examples and test the tools’ usage on
a real-world application, we modeled a fuel cell thermal man-
agement (FCTM) system [40, 50] developed at Ford Motor
Company in collaboration with the University of Michigan.

8.1 The system

In the FCTM system, the electric engine of a car is powered
by a battery, which can be charged using a stack of fuel cells.
The cells operate most efficiently at a certain temperature,
thus the ambient temperature as well as the cell usage (which
warms them up) influence their efficiency. Furthermore, for
a long battery lifetime, the battery should not be operated
at extremal state-of-charge values. Therefore, a controller
should keep the cells’ temperature as well as the battery’s
state of charge within certain bounds.

The components of the FCTM system are depicted in
Fig. 17. A liquid can be pumped through the fuel cell
stack. The temperature of this liquid affects (increases or
decreases) the fuel cells’ temperature. The controller oper-
ates in a feedback-loop periodically with a cycle time δ. In
each control cycle, the controller senses the plant’s state and
decides whether or not to pump the liquid. When pumping,
the controller can either utilize a battery-powered heating
device to increase the temperature of the coolant liquid (and
therewith also decrease the battery’s state of charge), or let
the coolant liquid pass though the car’s radiator to reduce its
temperature, where the cooling-effect of the radiator depends
on the car’s velocity and the ambient temperature.

The controller uses a look-up table that has been synthe-
sized using model-predictive control [50]. The state space
of the plant is partitioned into 21 regions and each region is
mapped to a controller output, which affects the dynamics

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Fig. 17 Structure of the fuel cell thermal management (FCTM) system.
The controller may influence (dashed) the valve to control the coolant
flow, the pump to adjust the flow rate and the power used by the heater.
Coolant flows are depicted as arrows, wires are depicted as dotted lines

of the plant for the next control cycle. The controller outputs
are four-dimensional, specifying a Boolean value for the di-
recting of the coolant towards the heater or the radiator, as
well as numeric values for the coolant flow rate, the current
taken from the fuel cell and the power directed to the heating
device.

8.2 The SIMULINK model

The dynamics of the car is given in [40]. Since it is a propri-
etary model, confidential details are not publicly available,
but for the modeling we were provided with Simulink-files
of the complete system with fully specified dynamics and a
fully specified controller.

In the Simulink model, the car’s state is described by
five continuously evolving variables and piecewise constant
controller outputs. The continuous dynamics is specified
by nonlinear differential equations which also contain im-
plicit switching between different dynamics. The switching
is a result of min/max operations comparing variables, for
instance boundaries of the state space where the dynamic
changes (e.g., when the ambient temperature falls below cer-
tain boundaries). That means that while the expressions sug-
gest a purely dynamical system, i.e., a system with one mode
of operation, due to these conditions the system is implicitly
hybrid with discrete switches between different modes. Apart
from implicit switches, the dynamics also contains rational
terms, transcendental functions and nonlinear polynomials,
which poses special requirements on the tools available for
verification.

Additionally, the usage of the motor and the environmental
conditions need to be specified as input. The energy drained
by the motor is modeled via standard driving cycles, other
operating conditions are given as intervals (e.g., ambient
temperature) or provided as constants (e.g., oxygen partial
pressure).

8.3 The hybrid automaton model

First we needed to specify a hybrid automaton model for
the FCTM system. Our goal was to model the system as

accurately as possible within the expressivity bounds of the
verification tools, i.e., while ensuring that at least one tool
can (in theory) compute reachability for the modeled system.

We have created the hybrid automaton model, visualized
in Fig. 18, as follows:

– The Simulink dynamics uses four Boolean switches,
resulting in 16 possible continuous dynamics. For each of
these dynamics under the different switch evaluations, we
define a control location – which we call switch modes –
in the hybrid automaton. For instance, if the original dy-
namics contains a max operation on two variables a, b,
e.g., max(a,b), we introduce locations where a ≥ b holds
and locations where a ≤ b holds. Each of these 16 switch
modes is connected via guarded transitions to four other
switch modes, where each of these transitions models the
truth value change for one of the Boolean switches. Dy-
namic behavior for each of the switch modes is bounded
by invariant constraints, assuring that the switch mode is
changed when the switching conditions change.

– The above plant model is still parametric in the controller
output. To model the controller’s effect, we have created
21 instances of the plant model (with 16 switch modes
each), each of them instantiated with one of the 21 possible
controller outputs as provided by the lookup table.

– Next, we model the controller’s execution, alternating be-
tween continuous evolution and the discrete controller ex-
ecution steps.

The controller does not modify the continuous vari-
ables’ values but rather affects the dynamics they are sub-
ject to. Furthermore, the switching conditions do not refer
to any control parameters. Thus, the controller execution
cannot change the switch modes, only the plant instance
may potentially induce switching. For example, as depicted
in Fig. 18, if the system was in switch mode �15 in plant
instance 20 and the controller is invoked, the switch mode
after controller invocation will again be �15, but possibly
in a different plant instance with different dynamics.

Thus, in order to model the control, we could add a
discrete transition from each switch mode �i in a plant
instance to all switch modes �i in all the plant instances.
However, we can achieve a major reduction of the number
of transitions needed to model the control step (from 21 ·
16 · 21 to 21 · 16 · 2) by introducing one controller location
for each switch mode (controlleri for switch mode �i in
Fig. 18). Controller execution is then modeled by moving
from any switch mode �i to controller location controlleri
and from there to a switch mode �i in any of the plant
instances.

– Finally, we need to model the periodic execution of the
controller with cycle time δ. We do so by defining a clock
t with derivative 1 and initial value 0. We guard each jump
from a switch to a control mode by t = δ and add a reset

Springer

S. Schupp et al.

Fig. 18 Visualization of the FCTM system model with plant in-
stances planti (0 ≤ i < 21), switch modes �j and controller locations
controller j (0 ≤ j < 16); jumps between switch modes are indicated
only for one switch mode per plant instance. The jumps to and from
controller locations refer to an additional clock t to model the cycle time
δ, and the output ctrlk of the controller under condition ctrl_condk .
In our evaluation we considered the gray-shaded part of the model first
(fctm_I) and later a single plant instance (fctm_II)

t := 0 to it. Additionally, invariant constraints t ≤ δ in each
switch mode and t ≤ 0 in each controller mode ensure that
the controller execution is urgent and instantaneous.

The resulting model has 10 continuous variables, 16 +

21 · 16 = 352 locations and (21 · 16 · 4) + (21 · 16 · 2) = 672
transitions. The model size could be reduced, e.g., by re-
moving discrete transitions that can never be enabled (e.g.,
whose guard condition contradicts to the source location’s
invariant) However, as we explain below, observed problems
during the execution did not occur due to the complexity of
the discrete structure of the model but were observable even
within a small part of one plant instance.

8.4 Verification

As the dynamics are nonlinear, we have selected the tools
CoRA, dReach, and Flow* for the analysis of the model.
As a first test, our goal was to compute the sets of all reachable
states (within some time and jump bounds) to see whether
the tools in general can produce results.

For a first verification attempt we used from a single plant
instance with a fixed controller input, a submodel with one
location and its four neighboring locations of a specific plant
instance with 8 connecting jumps (indicated by the shaded
locations in Fig. 18). The characteristics of this subsystem
(fctm_I) are given in Table 5.

In a first attempt we tried the tool Flow*, however, the
tool did not manage to parse the dynamics completely but
terminated with an error during parsing. Further attempts in

Table 5 High-level characteristics of the fuel cell model (full model:
fctm_F, subsystem I: fctm_I, subsystem II: fctm_II) similar to Ta-
ble 3

Name hyb dim loc jmp Ext Hypl Zeno
in grd

fctm_I � 10 5 8 × � �

fctm_II � 10 16 64 × � �

fctm_F � 10 352 672 × � �

reducing the complexity of the dynamics by replacing single
terms by simpler expressions or even constants were unsuc-
cessful. Our final attempt contained only dynamics for one
variable (all other variables were treated as constants), the
dynamics was specified as a polynomial expression with ra-
tional coefficients and degree at most two as well as a square-
root expression. Neither this model could be analyzed.

Originally, the system was provided in Simulink.
Therefore, using the Matlab-based tool CoRA seemed
reasonable. During the evaluation of a single plant instance
(16 locations), the tool successfully parsed the dynamics
and was able to compute sets of reachable states (instance
fctm_I) within single locations. However, processing dis-
crete jumps between the switch modes did not succeed: those
jumps are guarded by hyperplanes (see Sect. 4.2), for which
CoRA’s discrete event detection fails.

To overcome this, we tried to enlarge the guards. As an
example, a guard which previously was expressed as x = c
now was changed to c − ε ≤ x ∧ x ≤ c + ε for a sufficiently
large ε > 0. Nonetheless, even with enlargement ε = 1 we
still could not achieve any conclusive results.

In a last attempt we tried the tool dReach on a single
plant instance (fctm_II). The tool seemed to compute sets
of reachable states but we were not able to estimate their
validity, as it was not possible to obtain any visualization of
the computed sets of reachable states, and other output was
too complex to be understandable by humans.

Developers in industry often work with simulations,
whose traces over time can be visualized and may be used to
estimate the correctness of a model and the correctness of the
computed sets of reachable states. The tool CoRA allows to
simulate, but due to the aforementioned issues we were not
able to get results and consequently no further insights.

Given the special model structure, probably dedicated
methods adapted to this problem structure could be more
successful. For example, one could separate discrete vari-
ables (i.e., variables whose values do not change during con-
tinuous evolution) and handle them with more light-weight
computations as in [44]. Unfortunately, the approach pro-
posed in [44] was only implemented for hybrid automata
with linear ODEs and thus cannot be applied to our model.

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

9 Conclusion

The aim of this work was to analyze the applicability and us-
ability of state-of-the-art hybrid systems safety verification
tools for industrial applications with a focus on application
in the automotive sector. To do so, we have chosen six aca-
demic benchmark families (altogether 14 benchmarks) with
respect to different criteria that are relevant for the application
in the automotive industry. The benchmarks include systems
with linear and nonlinear dynamics, contain both hybrid and
purely continuous systems. Additionally, benchmarks with
variations of crucial parameters such as the state space di-
mension or the number of discrete locations are included. We
have selected six representative tools from the four major dif-
ferent approaches for hybrid systems safety verification and
evaluated those tools against the chosen benchmarks. Addi-
tionally, we have taken a system from the automotive industry
as a more pragmatic benchmark to evaluate the selected tools.

Challenges and observations from the model transforma-
tion, tool execution and benchmarking are presented in this
work and allow for various conclusions. The key observa-
tions made in this work can be summarized as follows:

– Analytical capabilities. The results on the academic
benchmarks in the first part of the evaluation differ strongly
from the results observed on the industrial benchmark. In
academia, developers tend to address one challenge at a
time and provide an in-depth analysis and solution which
is implemented in a tool. In contrast to this, industrial
benchmarks exhibit a combination of challenges which
explains the observed results.

– Reliability. Most tools in this field of research are less than
five years old and developed from academic prototypes.
Those tools often involve numerical approaches and rely
on third-party libraries for their implementation.

While most tools and the approaches they implement
are theoretically capable of handling a certain system, we
faced a few errors due to technical problems (erroneous
parsing, problems in some third-party libraries, etc.).

– Scalability. A central aspect for industrial applications is
scalability. Academic research aims to provide solutions
to scientifically interesting problems, which might be dif-
ferent to the problems industrial engineers and researchers
have to face. Furthermore, available benchmark collections
serve the testing, evaluation and comparison of different
approaches, therefore they often focus on problems that are
hard enough to be challenging but also easy enough to be
solved by at least some available methods. Systems from
industry and thus also the corresponding models thereof
usually are significantly larger in size and require higher
computational effort than the academic benchmarks. Fur-
thermore, the composition of models remains challenging
for most approaches which is not addressed by most of the
tools.

– Automation. Different tools and approaches come with
different, often incomparable parameter sets of different
sizes. Smaller parameter sets simplify the verification pro-
cess but restrict optimality; adaptive parameters may help
the user without loosing optimality. Furthermore, tool pa-
rameters are often poorly documented, their meaning and
interplay is often unclear. Thus, finding suitable parameter
configurations is difficult and requires an understanding of
the implemented method.

– Modeling. Model construction could be done for all the
tools with a reasonable amount of effort. Models can be
defined conveniently with the SpaceEx modeling GUI,
while the tool Hyst and a SpaceEx-to-CoRA trans-
formator convert SpaceEx-models to certain other input
languages. Modeling in programming frameworks (e.g.,
CoRA, HyLaa) is more flexible but might be also more
effortful than invoking binaries.

An option for larger companies such as Ford Motor
Company can be to use their own internal description lan-
guage of hybrid systems and a conversion tool for the anal-
ysis tools in product development as for instance described
in [16] for C-code verification.

– Usability. All tools evaluated were of academic nature, as
a commercialization in this field has not happened, yet.

Consequently, academic tools usually come with less
features, less documentation and support in comparison to
commercial tools. The increased usage of artifact evalua-
tions by external reviewers for conference submissions are
part of a recent development. Apart from the repeatability
of the published experiments, a side-effect is the improve-
ment of the usability and robustness of tools, as external
reviewers need to be able to run and modify examples
during those evaluations.

From our observations, documentation and usability of
the functionalities, especially parameter descriptions, can
be improved for most tools. Additionally, in-depth know-
ledge of hybrid automata as well as the implemented ap-
proach is required for most tools. Continuous interactions
with industrial partners might increase sensibility of tool
developers for the work flow of industrial engineers and
increase the usability. Well-designed GUIs which aid the
selection of analysis parameters and combinations thereof
strongly improve usability.

Increasing scalability is already a natural academic objec-
tive, focusing also on the reliability of academic tools and
their capability to analyze systems that combine multiple
challenges is crucial to enable their usage also in industrial
context. More industrial benchmarks could be an important
driving force in the research community, guiding develop-
ment towards tools that can handle these systems exhibiting
multiple challenges at once.

Springer

S. Schupp et al.

Even if an academic tool is powerful and easy to use,
academia cannot assure reliable support by contracts, and
cannot replace commercial development. As an example, the
tool developed by the company BTC is built from several ex-
isting tools originating from academic research as a backend
for a commercial C-code verification tool capable of han-
dling industrial applications [15] even though most of those
academic tools themselves are not capable of handling in-
dustrial applications [49]. This indicates that while results
of individual tools might be less positive, a composition of
approaches may lead to success.

Technologies are continuously improving and technology
transfer to industry is starting, driven most importantly by the
urgent need of automated approaches for the safety analysis
of complex industrial systems. Though the above observa-
tions show that the current academic tools are not ready yet
to be embedded as push-button components in industrial pro-
cesses, impressive academic developments on several key-
points have been achieved in the last decades as the reports
on the annually ARCH-competition indicate [7–9].

These developments let us hope that these trends will
enable the future industrial usage and contribute to the de-
velopment of safe and reliable systems.

Appendix A: Detailed description of the
selected benchmarks

Building (linear, continuous) The building benchmark
(bld_48) was proposed to ARCH within a collection of
large-scale, continuous systems [48]. This benchmark con-
siders a simplified model of the Los Angeles Hospital, a
building with eight floors modeled by a continuous system
comprising 48 variables. The displacement and dynamics of
each floor is modeled by a beam-model. The goal is to val-
idate, whether an initial displacement converges to a stable
equilibrium within reasonable time and with limited over-
shoot. In the instance considered, the displacement modeled
by variable x25 should never exceed a bound of 0.006 within
the first 20 time units (time horizon). Similarly to the vehicle
platoon benchmark (see below), this benchmark is a constant
part of the ARCH Friendly Competition.

Vehicle platoon (linear, hybrid) In this work we con-
sider two instances (plt_30 and plt_42) of the vehicle
platoon benchmark [13]. This benchmark is one of the first
benchmarks proposed to ARCH and has been used in vari-
ous evaluations, among them it has been a constant part of
the ARCH Friendly Competition. The system models a pla-
toon of three vehicles, where the first one is human-driven
and the two following ones are autonomous. The vehicle dis-
tance, speed and acceleration are modeled via 9 state vari-
ables. The following vehicles are equipped with a controller

to keep the distance at a certain level. In the model, the vehi-
cles communicate the current distances via radio; the model
contains a location for normal operation of the radio and
a second location representing disturbed communication in
which the dynamics changes as the controller does not get
proper input readings. While in the original version of the
benchmark communication breakdowns could happen at ar-
bitrary points in time, simplified versions have been used in
the ARCH Friendly Competition where the communication
breaks down deterministically as most tools cannot handle
arbitrary switching.

The safe region in the two models bounds the distance
between the vehicles to at least 30 m and 42 m, respectively.
The time horizon is set to 20 time units, due to the determin-
istic switching every 5 time units at most 3 discrete jumps
are analyzed.

Filtered oscillator (linear, hybrid) Being designed as a
scalable model, the filtered oscillator benchmark comes with
four instances (flt_04, flt_08, flt_16, and flt_32). This
model has been presented in the context of the publication of
the tool SpaceEx as one of the benchmarks [28] and been
reused in later publications to show performance improve-
ments. The system consists of a switched oscillator system
modeled via four locations, where the output of the oscilla-
tor is smoothed by a series of first-order filters. In this work,
the number next to each instance denotes the number of ap-
plied filters. The state space is built from two variables which
are used to model the oscillator and additional k variables
for a series of k filters. This means that additional filtering
is realized by additional variables in the dynamics, i.e., an
increased state space dimension.

The specification aims at keeping one of the variables
y used to describe the oscillating behavior below a fixed
threshold value (y ≤ 0.5). In our evaluation at most 10 dis-
crete jumps are analyzed with a time horizon of 10 time
units.

Steering controller (nonlinear, hybrid) The simplified
model of a steering controller was first proposed as a mod-
ular system [24]. The system models a steering controller,
which aims at keeping a car close to the center of the lane.
The lane is divided into seven regions, one for the center
and symmetrically three regions left and right of the center
depending on the distance to the lane center with different
steering dynamics. As only the distance to the center of the
lane is considered, the system dynamics in each of the seven
locations can be described by two variables. In the original
version, a controller for the driving speed was considered as
well; we omit this controller and assume constant speed or
arbitrary speed from an interval and instead focus on the lane-
keeping property of the system. In our work we consider three
variations (ste_05, ste_10, and ste_RV) of the benchmark

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

in which the speed of the vehicle is set to 5 m s−1, 10 m s−1,
or may vary within the interval [5,10] m s−1, respectively.
Though all instances contain potential Zeno behavior, tra-
jectories (for instance, ste_05) should not leave the center
region and thus Zeno behavior should not be present.

The specification used in the evaluation is similar to the
original one in which the lane should never be left, i.e., the
distance to the center of the lane should never exceed a certain
boundary (here 10 m). We use a time horizon of 30 time units
and a maximum of 10 jumps.

Glycemic control (nonlinear, hybrid) Coming from bi-
ology, this family of systems models the amount of blood-
sugar over time under different models for insulin dis-
charge [17–19]. The model was extracted by Xin Chen and
presented as a part of a benchmark collection [23]. Three dif-
ferent instances have been identified (gly_01, gly_02, and
gly_03) which differ in their dynamics and number of lo-
cations (two, respectively three). This family of benchmarks
was chosen, as it exhibits a larger state space dimension (four
and five variables) than the other benchmarks for nonlinear
hybrid systems.

The goal in this benchmark is to show that the difference
of the blood-sugar concentration to the base-value never ex-
ceeds a certain threshold. In the analysis we use a time hori-
zon of 720 time units and a maximal jump depth of 10.

Spring–pendulum (nonlinear, continuous) The model
of a mass attached to a spring–pendulum is well known
in mechanics [34]. Being a continuous, nonlinear system
(pnd_01), this model uses transcendental functions to de-
scribe the dynamics of the system. In its original version, the
dynamics are described as second-order differential equa-
tions over two variables—in the used version, the dynamics
are converted to a system of first-order differential equations
over four variables by adding the intermediate variables.

In our evaluation we used a time horizon of 10 time units.
As there is no specification given our aim was to compute
reachability only.

Appendix B: Settings for the evaluation

The settings for each tool used for the evaluation are given
here. We use the time horizon and jump depths as listed
for the benchmarks in Appendix A. As SpaceEx counts
the number of executed jumps differently, jump depth and
time horizon have been integrated into the formal models by
adding auxiliary clocks.

Some of the tools provide default values for parameters
in case these are not set by the user. For those tools, if a
parameter is not listed below, the default values have been
used in the evaluation.

Building
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.015625,

endTime = 1
CoRA step size = 0.005, zonotopeOrder = 50, polytopeOrder =

1, taylorTerms = 4, reduction = girard, guardIntersect =

zonoGirard, enclosureEnables = 3;5
dReach k = 0, l = 0
Flow* fixed steps = 0.001, remainder estimation = 1e-4, iden-

tity precondition, adaptive orders = 3-8, cutoff 1e-15,
precision = 53

HyLaa step size = 0.001
SpaceEx scenario = supp, directions = box, time step = 0.001,

iter-max = 10, rel-err = 1.0e-8, abs-err = 1.0e-12

Platoon, BND30
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.001, end-

Time = 4
CoRA step size = 0.02, zonotopeOrder = 200, polytopeOrder =

3, taylorTerms = 4, reduction = girard
dReach k = 10, l = 0
Flow* fixed steps = 0.0005, remainder estimation = 1e-4, iden-

tity precondition, adaptive orders = 3-8, cutoff 1e-15,
precision = 53, max jumps = 3

HyLaa step size = 0.1
SpaceEx scenario = supp, directions = oct, time step = 1, fp.-

tol = 3, fp.-tol-rel = 0, iter-max = 200, rel-err = 1.0e-9,
abs-err = 1.0e-12, set aggregation = none

Platoon, BND42
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.001, end-

Time = 2.5
CoRA step size = 0.02, taylorTerms = 4, zonotopeOrder = 200,

polytopeOrder = 3, reduction = girard
dReach k = 10, l = 0
Flow* fixed steps = 0.005, remainder estimation = 1e-4, iden-

tity precondition, adaptive orders = 3-8, cutoff 1e-15,
precision = 53, max jumps = 3

HyLaa step size = 0.1
SpaceEx scenario = supp, directions = box, time step = 1, fp.-

tol = 3, fp.-tol-rel = 0, iter-max = 200, rel-err = 1.0e-9,
abs-err = 1.0e-12, set aggregation = none

Filtered Oscillator
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.001, end-

Time = 4
CoRA step size = 0.01, zonotopeOrder = 100, polytopeOrder =

1, taylorTerms = 4, reduction = girard, guardIntersect =

polytope, enclosureEnables = 3;5
dReach k = 10, l = 0
Flow* fixed steps = 0.05, remainder estimation = 1e-5, identity

precondition, fixed orders = 8, cutoff 1e-15, precision =

128, max jumps = 10
HyLaa step size = 0.1
SpaceEx scenario = supp, directions = box, time step = 0.1, fp.-

tol = 1, fp.-tol-rel = 0, iter-max = 10, rel-err = 1.0e-12,
abs-err = 1.0e-15, set aggregation = none

Springer

S. Schupp et al.

Steering Controller
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.015625
CoRA step size = 0.1, zonotopeOrder = 100, polytopeOrder =

20, taylorTerms = 10, reduction = girard, guardInter-
sect = polytope, enclosureEnables = 3;5

dReach k = 99999999, l = 4
Flow* fixed steps = 0.05, remainder estimation = 1e-4, iden-

tity precondition, adaptive orders = 3-8, cutoff 1e-15,
precision = 53, max jumps = 9999999

For the steering controller the lower bound on jumps for dReach is
not zero, as the bad states are at earliest reachable (if at all) after four
jumps.

Glycemic Control
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.015625,
CoRA step size = 0.01/ 0.05 / 0.05, zonotopeOrder = 20, poly-

topeOrder = 10, taylorTerms = 10, reduction = girard,
guardIntersect = polytope, enclosureEnables = 5

dReach k = 10, l = 0
Flow* fixed steps = 0.05, remainder estimation = 1e-2, iden-

tity precondition, adaptive orders = 2-5, cutoff 1e-12,
precision = 53, max jumps = 10

Pendulum
Acumen Semantics: 2015 Enclosure, maxTimeStep = 0.01, end-

Time = 7
CoRA step size = 0.01, zonotopeOrder = 100, polytopeOrder =

1, taylorTerms = 4, reduction = girard, guardIntersect =

polytope, enclosureEnables = 3;5
dReach k = 1, l = 1
Flow* fixed steps = 0.003, remainder estimation = 1e-10, iden-

tity precondition, adaptive orders = 6-8, cutoff 1e-12,
precision = 53

Note that for the model of the pendulum system for dReach an
extra location indicating the violation has been introduced which is why
the bounds for the unrolling are chosen equal to one instead of being
zero as, for instance, in the building benchmark.

Appendix C: Code examples

We give code examples (Algorithms 3–7) for the bouncing
ball for all tools but SpaceEx and Flow*, which are
shown in the Figures Algorithm 1 resp. Algorithm 2.

Algorithm 3 Code example for Acumen for the bouncing
ball system
model Main(simulator) =
initially

x = [10 .. 10.2],
x’ = 0, x’’ = 0

always
claim x >= 0,
if x == 0 && x’ < 0 then
x’+ = -0.75*x’
else
x’’ = -9.81,

hypothesis "x less than initial state" x <=
10.21,

hypothesis "x larger than zero" x >= 0,

simulator.endTime += 5

Springer

On the applicability of hybrid systems safety verification tools from the automotive perspective

Algorithm 4 Code example for CoRA for the bouncing ball
system
function res = bouncing_ball()

options.x0= [10.1; 0];
options.R0 = zonotope([options.x0, 0.1 * [1,

0]]);
options.startLoc = 1;

[... settings ...]

A = [0 1; 0 0];
B = [0;0];
c = [0; -9.81];
dynamics = linearSys(’linearSys ’, A, B, c);

invariant = mptPolytope(struct(’A’, [-1 0],
’b’, 0));

reset1.A = [1,0;0,-0.75];
reset1.b = zeros(2,1);

guard1 = mptPolytope(struct(’A’,
[-1,0;1,0;0,1],’b’, [0;0;0]));

transitions{1} = transition(guard, reset, 1,
’ball’,’ball’);

options.uLoc{1} = 0;
options.uLocTrans{1} = 0;
options.Uloc{1} = zonotope(0);

loc{1} = location(’ball’, 1, invariant,
transitions , dynamics);

HA = hybridAutomaton(loc);

[HA] = reach(HA,options);
figure
hold on
options.projectedDimensions = [1,2];
options.plotType = ’b’;
plot(HA,’reachableSet ’,options); %plot

reachable set
res = 1;

Algorithm 5 Code example for dReach for the bouncing
ball system
[0, 15] x;
[-18, 18] v;
[0, 5] time;

{ mode 1;
invt:

(x >= 0);
flow:

d/dt[x] = v;
d/dt[v] = -9.81;

jump:
(and (x = 0) (v < 0)) ==> @1 (and (x’ = x)

(v’ = -0.75*v));
}
init:
@1 (and (x >= 10) (x <= 10.2) (v = 0));

goal:
@1 (and (x >= 10.2));

Springer

S. Schupp et al.

Algorithm 6 Code example for HyLaa for the bouncing
ball system
[... imports ...]

def define_ha():
ha = HybridAutomaton()
dynamics variable order: [x, v, affine]

ball = ha.new_mode(’ball’)
a_matrix = [\

[0, 1, 0], \
[0, 0, -9.81], \
[0, 0, 0], \
]

ball.set_dynamics(a_matrix)
ball.set_invariant([[-1, 0, 0]], [0])

_error = ha.new_mode(’_error ’)

transitions
jump = ha.new_transition(ball, ball)
jump.set_guard([

[-1, 0, 0], \
[1, 0, 0], \
[0, 1, 0], \
], [0, 0, 0])

reset_csr = [[1, 0, 0], \
[0, -0.75, 0], \
[0, 0, 1], \
]

jump.set_reset(reset_csr)

ha.new_transition(ball,_error).set_guard
([[1,0,0],], [0,])

ha.new_transition(ball,_error).set_guard
([[-1,0,0],], [-10.2,])

return ha

def define_init_states(ha):
init_lpi = lputil.from_box([(10, 10.2), (0,

0), (1, 1)], ball)
init_list = [StateSet(init_lpi , ball)]
return init_list

def define_settings(image_path):
[...]
return settings

def run_hylaa(image_path):
ha = define_ha()
init = define_init_states(ha)
settings = define_settings(image_path)
result = Core(ha, settings).run(init)
return result

if __name__ == ’__main__ ’:
image_path = ’out.png’
run_hylaa(image_path)

Algorithm 7 Code example for KeYmaeraX for the
bouncing ball system
ArchiveEntry "Bouncing Ball"

Definitions
Real H;

End.

ProgramVariables
Real x, v;

End.

Problem
(x=H & H >= 10 & H<=10.2 & v=0)
->
[
{

{x’=v,v’=-9.81 & x>=0}
{?x=0 & v < 0; v:=-0.75*v; ++ ?x!=0;}

}* @invariant(2*9.81*x=2*9.81*H-v^2 & x>=0)
] (x>=0 & x<=H)

End.

End.

Acknowledgements We are grateful to Amey Karnik and his Ford
team for sharing the model of the fuel cell system with us. We thank
Liren Yang and his University of Michigan team for providing and
patiently explaining the controller of this fuel cell system. We appreciate
the help of Tristan Ebert, Marta Grobelna, Sergej Neuberger, and Tom
Schäfers in the evaluation. We also thank our anonymous reviewers for
their detailed feedback.

Funding Open Access funding enabled and organized by Projekt
DEAL. We are thankful for the funding of this work by Ford Motor
Company in the course of the project “Safety Verification for Mixed
Discrete–Continuous Automotive Systems”.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. https://cps-vo.org/group/ARCH/FriendlyCompetition
2. https://www.wolfram.com/engine/
3. https://cps-vo.org/group/ARCH/benchmarks
4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H.,

Ulbrich, M. (eds.): Deductive Software Verification – The KeY
Book – From Theory to Practice. LNCS, vol. 10001. Springer,
Berlin (2016)

Springer

http://creativecommons.org/licenses/by/4.0/
https://cps-vo.org/group/ARCH/FriendlyCompetition
https://www.wolfram.com/engine/
https://cps-vo.org/group/ARCH/benchmarks

On the applicability of hybrid systems safety verification tools from the automotive perspective

5. Alla, H., David, R.: Continuous and hybrid Petri nets. J. Circuits
Syst. Comput. 8(01), 159–188 (1998)

6. Althoff, M.: An introduction to CORA 2015 (tool presentation).
In: Proc. of ARCH’15. EPiC Series in Computing, vol. 34,
pp. 120–151. EasyChair (2015)

7. Althoff, M., Bak, S., Cattaruzza, D., Chen, X., Frehse, G., Ray,
R., Schupp, S.: ARCH-COMP17 category report: continuous and
hybrid systems with linear continuous dynamics. In: Proc. of
ARCH’17. EPiC Series in Computing, vol. 48, pp. 143–159. Easy-
Chair (2017)

8. Althoff, M., Bak, S., Chen, X., Fan, C., Forets, M., Frehse, G.,
Kochdumper, N., Li, Y., Mitra, S., Ray, R., Schilling, C., Schupp,
S.: ARCH-COMP18 category report: continuous and hybrid sys-
tems with linear continuous dynamics. In: Proc. of ARCH’18. EPiC
Series in Computing, vol. 54, pp. 23–52. EasyChair (2018)

9. Althoff, M., Bak, S., Forets, M., Frehse, G., Kochdumper, N., Ray,
R., Schilling, C., Schupp, S.: ARCH-COMP19 category report:
continuous and hybrid systems with linear continuous dynam-
ics. In: Proc. of ARCH’19. EPiC Series in Computing, vol. 61,
pp. 14–40. EasyChair (2019)

10. Bak, S., Caccamo, M.: Computing reachability for nonlinear sys-
tems with HyCreate (2013). Poster at HSCC’13

11. Bak, S., Duggirala, P.S.: Hylaa: a tool for computing simulation-
equivalent reachability for linear systems. In: Proc. of HSCC’17,
pp. 173–178. ACM, New York (2017)

12. Bak, S., Bogomolov, S., Johnson, T.T.: Hyst: a source transforma-
tion and translation tool for hybrid automaton models. In: Proc. of
HSCC’15, pp. 128–133. ACM, New York (2015)

13. Ben Makhlouf, I., Kowalewski, S.: Networked cooperative platoon
of vehicles for testing methods and verification tools. In: Proc. of
ARCH’14. EPiC Series in Computing, vol. 34, pp. 37–42. Easy-
Chair (2014)

14. Benvenuti, L., Bresolin, D., Casagrande, A., Collins, P., Ferrari,
A., Mazzi, E., Sangiovanni-Vincentelli, A., Villa, T.: Reachability
computation for hybrid systems with ariadne. IFAC Proc. Vol.
41(2), 8960–8965 (2008)

15. Berger, P., Katoen, J.P., Ábrahám, E., Waez, M.T.B., Rambow,
T.: Verifying auto-generated C code from Simulink. In: Proc. of
FM’18, pp. 312–328. Springer, Berlin (2018)

16. Berger, P., Nellen, J., Katoen, J.P., Ábrahám, E., Waez, M.T.B.,
Rambow, T.: Multiple analyses, requirements once: simplifying
testing and verification in automotive model-based development.
In: Proc. of FMICS’19. LNCS, vol. 11687, pp. 59–75. Springer,
Berlin (2019)

17. Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C.: Quantita-
tive estimation of insulin sensitivity. Am. J. Physiol: Endocrinol.
Metab. 236(6), E667 (1979)

18. Bergman, R.N., Phillips, L.S., Cobelli, C.: Physiologic evaluation
of factors controlling glucose tolerance in man: measurement of
insulin sensitivity and beta-cell glucose sensitivity from the re-
sponse to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467
(1981)

19. Bergman, R.N., Finegood, D.T., Ader, M.: Assessment of insulin
sensitivity in vivo. Endocr. Rev. 6(1), 45–86 (1985)

20. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions.
Springer, Berlin (2013)

21. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling,
C.: JuliaReach: a toolbox for set-based reachability. In: Proc. of
HSCC’19, pp. 39–44. ACM, New York (2019)

22. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer
for non-linear hybrid systems. In: Proc. of CAV’13, pp. 258–263.
Springer, Berlin (2013)

23. Chen, X., Schupp, S., Ben Makhlouf, I., Ábrahám, E., Frehse, G.,
Kowalewski, S.: A benchmark suite for hybrid systems reachabil-
ity analysis. In: Proc. of NFM’15, pp. 408–414. Springer, Berlin
(2015)

24. Damm, W., Möhlmann, E., Rakow, A.: Component based design
of hybrid systems: a case study on concurrency and coupling. In:
Proc. of HSCC’14, pp. 145–150. ACM, New York (2014)

25. Donzé, A., Frehse, G.: Modular, hierarchical models of control
systems in SpaceEx. In: Proc. of ECC’13, pp. 4244–4251. IEEE,
New York (2013)

26. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Auto-
matic reachability analysis for nonlinear hybrid models with C2E2.
In: Proc. of CAV’16, pp. 531–538. Springer, Berlin (2016)

27. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verifica-
tion. In: Proc. of HSCC’04, pp. 326–341. Springer, Berlin (2004)

28. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable
verification of hybrid systems. In: Proc. of CAV’11, pp. 379–395.
Springer, Berlin (2011)

29. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeY-
maera X: an axiomatic tactical theorem prover for hybrid systems.
In: Proc. of CADE’15, pp. 527–538. Springer, Berlin (2015)

30. Henzinger, T.A.: The theory of hybrid automata. In: Verification of
Digital and Hybrid Systems, pp. 265–292. Springer, Berlin (2000)

31. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decid-
able about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124
(1998)

32. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability
analysis for hybrid systems. In: Proc. of TACAS’15, pp. 200–205.
Springer, Berlin (2015)

33. Masood, J., Philippsen, R., Duracz, J., Taha, W., Eriksson, H.,
Grante, C.: Domain analysis for standardised functional safety:
a case study on design-time verification of automatic emergency
braking. In: Proc. of FISITA’14, pp. 2–6. KIVI (2014)

34. Meiss, J.D.: Differential Dynamical Systems, vol. 14. SIAM,
Philadelphia (2007)

35. Mishra, A., Roy, S.K.: Towards formal verification of adaptive
cruise controller using SpaceEx. In: Proc. of VLSI-SATA’16,
pp. 1–6. IEEE, New York (2016)

36. Müller, A., Mitsch, S., Platzer, A.: Verified traffic networks:
component-based verification of cyber-physical flow systems. In:
Proc. of ITSC’15, pp. 757–764. IEEE, New York (2015)

37. Nellen, J., Rambow, T., Waez, M.T.B., Ábrahám, E., Katoen, J.P.:
Formal verification of automotive Simulink controller models: em-
pirical technical challenges, evaluation and recommendations. In:
Proc. of FM’18, pp. 382–398. Springer, Berlin (2018)

38. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic, vol. 2283. Springer, Berlin (2002)

39. Owre, S., Rushby, J.M., Shankar, N.: Pvs: a prototype verifica-
tion system. In: Proc. of CADE-11, pp. 748–752. Springer, Berlin
(1992)

40. Pence, B.L., Chen, J.: A framework for control oriented mod-
eling of Pem fuel cells. In: Proc. of DSCC’15, vol. 57250,
p. V002T26A002. American Society of Mechanical Engineers,
New York (2015)

41. Platzer, A.: Differential-algebraic dynamic logic for differential-
algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

42. Ratschan, S., She, Z.: Safety verification of hybrid systems by
constraint propagation-based abstraction refinement. ACM Trans.
Embed. Comput. Syst. 6(1), 8–31 (2007)

43. Schupp, S., Ábrahám, E., Ben Makhlouf, I., Kowalewski, S.:
HyPro: a C++ library for state set representations for hybrid sys-
tems reachability analysis. In: Proc. of NFM’17. LNCS, vol. 10227,
pp. 288–294. Springer, Berlin (2017)

44. Schupp, S., Nellen, J., Ábrahám, E.: Divide and conquer: variable
set separation in hybrid systems reachability analysis. In: Proc. of
QAPL’17, EPTCS, vol. 250, pp. 1–14. Open Publishing Associa-
tion (2017)

45. Schupp, S., Ábrahám, E., Ebert, T.: Recent developments in theory
and tool support for hybrid systems verification with hypro. Inf.
Comput. 289, 104945 (2022)

Springer

S. Schupp et al.

46. Taha, W., Duracz, A., Zeng, Y., Atkinson, K., Bartha, F.A., Brauner,
P., Duracz, J., Xu, F., Cartwright, R., Konečnỳ, M., et al.: Acumen:
an open-source testbed for cyber-physical systems research. In:
Proc. of IIoTS’15, pp. 118–130. Springer, Berlin (2015)

47. Testylier, R., Dang, T.: NLTOOLBOX: a library for reachabil-
ity computation of nonlinear dynamical systems. In: Proc. of
ATVA’13, pp. 469–473. Springer, Berlin (2013)

48. Tran, H.D., Nguyen, L.V., Johnson, T.T.: Large-scale linear sys-
tems from order-reduction (benchmark proposal). In: Proc. of
ARCH’16. EPiC Series in Computing, vol. 43, pp. 60–67. Easy-
Chair (2016)

49. Westhofen, L., Berger, P., Katoen, J.P.: Benchmarking software
model checkers on automotive code. Preprint, CoRR (2020). arXiv:
2003.11689

50. Yang, L., Karnik, A., Pence, B., Waez, M.T.B., Ozay, N.: Fuel cell
thermal management: modeling, specifications, and correct-by-
construction control synthesis. IEEE Trans. Control Syst. Technol.
28, 1638–1651 (2020)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

http://arxiv.org/abs/arXiv:2003.11689
http://arxiv.org/abs/arXiv:2003.11689

	On the applicability of hybrid systems safety verification tools from the automotive perspective
	Abstract
	Introduction

	Part 1. Technology
	Hybrid systems and their formal modeling
	Tool selection
	Challenges
	The selected methodologies and tools
	Flowpipe-construction-based reachability analysis
	CORA
	FLOW*
	SPACEEX

	Bounded model checking
	DREACH

	Rigorous simulation
	ACUMEN
	HYLAA

	Theorem proving
	KEYMAERAX

	Installing the tools

	Part 2. Evaluation
	Benchmark selection criteria
	Challenges
	Benchmarks properties
	Relevance
	Formal definition
	State space dimension (dim)
	Number of locations (loc) and jumps (jmp)
	Nondeterminism
	External inputs
	Hyperplanar guards
	Zeno behavior

	The selected benchmarks

	Model generation
	Challenges
	The model generation process
	Observations
	Automated model transformation
	Programming libraries
	Syntax and readability
	Soundness

	Verification task
	Challenges
	Parameter specification
	Documentation
	Finding suitable parameter values
	Dependencies and incompatibilities
	Comparability
	Initial sets

	Running the verification process
	Verification process
	Numerical instabilities

	Results and observations
	Challenges
	Running times
	Timeouts
	Internal problems
	Inconclusive results
	Impact of methodology

	Result visualization
	Recommendations

	A more realistic case study
	The system
	The SIMULINK model
	The hybrid automaton model
	Verification

	Conclusion
	Appendix A: Detailed description of the selected bench- marks
	Building (linear, continuous)
	Vehicle platoon (linear, hybrid)
	Filtered oscillator (linear, hybrid)
	Steering controller (nonlinear, hybrid)
	Glycemic control (nonlinear, hybrid)
	Spring--pendulum (nonlinear, continuous)

	Appendix B: Settings for the evaluation
	Appendix C: Code examples
	Acknowledgements
	References

